• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Substituição Trigonométrica

[Integral] Substituição Trigonométrica

Mensagempor klueger » Qua Mar 06, 2013 23:03

Não tenho noção... a unica dica que deram é usar o segundo caso de Substituição que seria \sqrt{a^2+u^2}

*Uma barra carregada de comprimento L produz um campo elétrico no ponto P(a,b) fora da barra, para calcular o campo elétrico, usamos a integral abaixo.

E(P)= \int\limits_{-a}^{L-a}\frac{pi.b}{4.pi.Zo.(x^2+b^2)^{2/3}}dx

*em que Pi é a densidade de carga por unidade de comprimento da barra e Zo é a permissividade do vácuo. Usando substituição trigonométrica, calcule a integral para determinar uma expressão para o campo elétrico E(P) !!
klueger
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Fev 03, 2013 15:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral] Substituição Trigonométrica

Mensagempor Russman » Qui Mar 07, 2013 00:37

Esse ponto P esta situado onde? Não tem alguma figura esse problema?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Integral] Substituição Trigonométrica

Mensagempor klueger » Qui Mar 07, 2013 00:42

.
Editado pela última vez por klueger em Qui Mar 07, 2013 00:44, em um total de 1 vez.
klueger
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Fev 03, 2013 15:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral] Substituição Trigonométrica

Mensagempor klueger » Qui Mar 07, 2013 00:44

Russman escreveu:Esse ponto P esta situado onde? Não tem alguma figura esse problema?


Não... só pede a integral para ter uma expressão desse campo elétrico E(P)
klueger
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Fev 03, 2013 15:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral] Substituição Trigonométrica

Mensagempor Russman » Qui Mar 07, 2013 01:45

Você precisa decompor o campo elétrico em componentes e integra-las usando o ângulo formado entre a linha perpendicular a barra, que a liga com o ponto P, e uma imaginária que ligue um diferencial de comprimento da mesma como variável de integração.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}