• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Definição de um numero real

Definição de um numero real

Mensagempor Zanatta » Ter Mar 05, 2013 18:37

Olá, tentei ler a teoria pelo liro e fiquei meio confuso, acabei nao conseguindo resolver esse exercicio, quem puder me ajudar:
É numero real ? Justifique sua resposta.

a(alfa) = {p E(pertence) Q | 3p + 1< 2p - 5}


quem puder me ajudar, grato desde já.
Zanatta
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Mar 05, 2013 18:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatistica
Andamento: cursando

Re: Definição de um numero real

Mensagempor e8group » Qua Mar 06, 2013 10:32

Definição :

Um número real é um subconjunto \alpha,de números racionais ,que satisfaz 4 propriedades .

(1) Se x \in \alpha e y é um número racional com y < x ,então y \in \alpha .

(2) \alpha \neq \varnothing

(3) \alpha \neq \mathbb{Q}

(4) \alpha não tem máximo , em outras palavras ,se x \in \alpha ,então existe algum y em \alpha com y>x .


Solução :

Dado o subconjunto \alpha =\{p\in \mathbb{Q} :3p+1 < 2p -5\} ,temos :

(1) Sejam a,b racionais quaisquer , com a \in \alpha e b < a ,temos :

a \in \alpha \iff a < -6 .

Como b < a ,segue b < -6 implica que b \in \alpha

(2) \alpha \neq \varnothing (é fácil ver !) , - 8 \in \alpha

(3) \alpha \neq \mathbb{Q} ,pois, 7 \in \mathbb{Q} e 7 \notin \alpha

Deixo para você desenvolver a propriedade (4) e concluir o exercício .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Definição de um numero real

Mensagempor e8group » Qua Mar 06, 2013 10:33

Definição :

Um número real é um subconjunto \alpha,de números racionais ,que satisfaz 4 propriedades .

(1) Se x \in \alpha e y é um número racional com y < x ,então y \in \alpha .

(2) \alpha \neq \varnothing

(3) \alpha \neq \mathbb{Q}

(4) \alpha não tem máximo , em outras palavras ,se x \in \alpha ,então existe algum y em \alpha com y>x .


Solução :

Dado o subconjunto \alpha =\{p\in \mathbb{Q} :3p+1 < 2p -5\} ,temos :

(1) Sejam a,b racionais quaisquer , com a \in \alpha e b < a ,temos :

a \in \alpha \iff a < -6 .

Como b < a ,segue b < -6 implica que b \in \alpha

(2) \alpha \neq \varnothing (é fácil ver !) , - 8 \in \alpha

(3) \alpha \neq \mathbb{Q} ,pois, 7 \in \mathbb{Q} e 7 \notin \alpha

Deixo para você desenvolver a propriedade (4) e concluir o exercício .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.