• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada funções trigonométricas

Derivada funções trigonométricas

Mensagempor samysoares » Seg Mar 04, 2013 13:38

f(x) = 2xcosxtgx
f'(x)=?

não consigo resolver essa questão, o meu resultado não bate com o gabarito de jeito nenhum. Por favor, se puder resolver passo a passo.
samysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Jan 08, 2013 12:42
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Derivada funções trigonométricas

Mensagempor marinalcd » Seg Mar 04, 2013 14:26

Consideremos uma função do tipo a.b.c
Para derivarmos esse produto, utilizaremos a regra do produto, ou seja:
f ' (x) = a'.b.c + a.b'.c + a.b.c'

Então:
f(x) = 2x.cosx.tgx

f ' (x) = (2x)'.cos xtg x + 2x(cos x)'.tg x + 2x.cos x.(tg x)'
f ' (x) = 2cos x.tg x + 2x (-sen x).tg x+ 2x.cos x.sec² x
f ' (x) = 2.cos x .tg x + -2x.sen x. tg x + 2x. cos x. sec² x

Espero ter ajudado!!!
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Derivada funções trigonométricas

Mensagempor samysoares » Qua Mar 06, 2013 12:46

Infelizmente o gabarito não parou por aí, o resultado está simplificado, Mas obrigada, acho que consigo simplificar!
samysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Jan 08, 2013 12:42
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Derivada funções trigonométricas

Mensagempor e8group » Qua Mar 06, 2013 13:51

Boa tarde .Há outra forma também, simplificando f ,ficando apenas com f(x) = 2x sin(x) .


Visto que tan(x) = sin(x)/cos(x) ,então f(x) = 2x cos(x) tan(x) = 2x cos(x) sin(x)/cos(x) = 2x \cdot sin(x) .

Pela regra do produto , f'(x) = [2x \cdot sin(x)]' = (2x)' \cdot sin(x) + 2x \cdot( sin(x))' ;tente concluir ,talvez o desenvlovimento acima está no formato do seu gabarito ,se não ,post !
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Derivada funções trigonométricas

Mensagempor marinalcd » Sex Mar 08, 2013 15:29

Poste o gabarito para a gente!
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.