• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Frações Parciais] Área

[Frações Parciais] Área

Mensagempor klueger » Sáb Mar 02, 2013 18:52

Seja a função: f(x) = \frac{1}{x^2-2x-3}
Usando o método das Frações Parciais, calcule sua área, sendo, para isto, a sua integral: \int\limits_{0}^{2}f(x)dx

Estou sem noção de Frações, já consultei tabela e não achei...
klueger
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Fev 03, 2013 15:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Frações Parciais] Área

Mensagempor Russman » Dom Mar 03, 2013 19:41

Primeiramente, você precisa decompor o polinômio do denominador em fatores. Como ele é de segundo grau sabemos que é possível escrever

x^2-2x-3 = (x-a)(x-b)

onde a e b são as raízes desse polinômio. Claramente podemos tomar a = 3 e b=-1. Assim,

\frac{1}{x^2-2x-3} = \frac{1}{(x-3)(x+1)}.

Agora suponha a existência de dois valores reais A e B tais que

\frac{1}{(x-3)(x+1)}  = \frac{A}{(x-3)}+\frac{B}{(x+1)} .

Desenvolvendo,

\frac{A}{(x-3)}+\frac{B}{(x+1)} = \frac{A(x+1)+B(x-3)}{(x-3)(x+1)}

e por igualdade de polinômios, temos

A(x+1)+B(x-3) = 1\Rightarrow (A+B)x +A-3B = 1\Rightarrow \left\{\begin{matrix}
A+B = 0\\ 
A-3B=1
\end{matrix}\right.\Rightarrow \left\{\begin{matrix}
A=\frac{1}{4}\\ 
B=- \frac{1}{4}
\end{matrix}\right.

Assim,

f(x)=\frac{1}{4}\left ( \frac{1}{(x-3)}-\frac{1}{(x+1)} \right ).

Agora é só integrar lembrando que \int \frac{dx}{x+a} = \ln (x+a) + c.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Frações Parciais] Área

Mensagempor LuizAquino » Ter Mar 05, 2013 10:19

klueger escreveu:Seja a função: f(x) = \frac{1}{x^2-2x-3}
Usando o método das Frações Parciais, calcule sua área, sendo, para isto, a sua integral: \int\limits_{0}^{2}f(x)dx

Estou sem noção de Frações, já consultei tabela e não achei...


Para revisar a técnica de Frações Parciais, eu gostaria de sugerir que você assista as videoaulas "29. Cálculo I - Integração por Frações Parciais (Caso I e II)" e "30. Cálculo I - Integração por Frações Parciais (Caso III e IV)". Essas videoaulas estão disponíveis no meu canal no YouTube:

http://www.youtube.com/LCMAquino

Eu espero que essas videoaulas possam ajudar você no entendimento desta técnica.

Russman escreveu:Agora é só integrar lembrando que \int \frac{dx}{x+a} = \ln (x+a) + c.


Apenas uma observação: o que temos na verdade seria \int \frac{1}{x+a}\, dx = \ln |x+a| + c .

Em outras palavras, devemos ter o módulo em x + a.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?