MarlonMO250 escreveu:russman, essa definição que você falou eu conheço, o problema é que a professora pediu na lista usando essa que eu falei
felipeek, no caso a derivada não ficaria 2x+1, sendo que é 4x-3
Você está fazendo confusão.
A derivada da função que você deu é sim 4x-3.
Note, entretanto, que você tentou resolver o exercício tomando
p=2. No momento que você faz isso, você substitui todas as variáveis
p da definição por 2 e
x que tendia a
p passa a tender a 2 (esse último você esqueceu de modificar ali no limite). O fato de você escolher um valor para a variável
p faz você obter como o resultado não uma Função Derivada geral (que seria 4x-3) e sim o RESULTADO da derivada no ponto que você escolheu (no caso p=2). Se você quisesse obter como resultado 4x-3, você deveria ter calculado o limite sem assumir um valor para
p. Aí sim, o resultado seria uma função derivada geral 4x-3 (no caso seria 4p-3) e aí sim você poderia substituir o x por 2 na função, obtendo a derivada no ponto x=2 que seria 5 (4*2-3 = 5).
O meu cálculo deu 2x+1 como resultado porque eu não terminei. Como
x tendia a
2, o passo final seria substiuir o
x por
2, obtendo como reposta final: 2(2)+1 = 5 . Ou seja, cinco é a derivada de x=2, ou ainda, 5 é a inclinação da reta tangente quando x=2. Obtemos direto o resultado de 5, sem obter a função derivada primeiro, pois assumimos direto p=2 no começo do exercicio (pensei que era assim que vc queria, pois foi vc mesmo que fez assim, na verdade, talvez seja isso mesmo que o exercicio quer)