• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral]

[Integral]

Mensagempor gabriel feron » Qua Fev 27, 2013 17:05

Fiz uma prova recentemente e caiu a seguinte questão: \int_{0}^{\pi/2}cosx.sin^5xdx, vou fazer uma prova daqui 2 semanas, com conteúdos mais avançados de calculo 2, mas estou revisando os conceitos gerais, por isso gostaria de ajuda para resolver essa questão, pois errei na prova e não estou conseguindo resolve-la... obrigado!
gabriel feron
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Seg Abr 16, 2012 03:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Hídrica
Andamento: cursando

Re: [Integral]

Mensagempor Jhonata » Qua Fev 27, 2013 17:28

gabriel feron escreveu:Fiz uma prova recentemente e caiu a seguinte questão: \int_{0}^{\pi/2}cosx.sin^5xdx, vou fazer uma prova daqui 2 semanas, com conteúdos mais avançados de calculo 2, mas estou revisando os conceitos gerais, por isso gostaria de ajuda para resolver essa questão, pois errei na prova e não estou conseguindo resolve-la... obrigado!


Essa é uma integral trigonométrica definida.
Como o termo seno é impar, você vai guardar um fator seno e usar a identidade sen²x= 1 - cos²x.

Gogo!

\int_{0}^{\pi/2}cosx.sin^5xdx = \int_{0}^{\pi/2} cosx.sinx(sin^2x)^2 dx = \int_{0}^{\pi/2}cosx.sinx(1-cos^2x)^2 dx

Agora fazemos uma substituição simples de modo que : u = cosx e du = -senx e vamos obter:

- \int_{}^{}u(1-u^2)^2du

Bem, note que na integral eu não coloquei o intervalo de integração, isso porque você irá voltar a variável x e integrará no intervalo (0, pi/2) como na integral inicial.
Tente resolver a partir daí, se tiver alguma dúvida, poste que se eu souber ajudarei com certeza.

Boa sorte, abraços.
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: