• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo II(FGV)

Calculo II(FGV)

Mensagempor bruno ken taniwaki » Sáb Fev 23, 2013 15:40

Suponha que x unidades de certo produto sejam vendidas quando o preço de cada unidade y é igual a y=40eˆ-0.05 x reais e que o mesmo numero de unidades seja fornecido pelo fabricante quando o preço de cada unidade y é giual a y=0.25xˆ3+x-5 reais
a) Determine a quantidade e o preço de equilibrio
b) Qual é a maxima receita que pode ser obtida?

igualei os dois y

y=y
joguei ln dos dois lados e depois derivei

e deu o resultado

-0.05=3(0.25x)+1/0.25xˆ3+x-5
xˆ3+60xˆ2+4x+60

Essa equacao eu nao consegui resolver, por favor me ajudem
bruno ken taniwaki
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Fev 23, 2013 15:31
Formação Escolar: GRADUAÇÃO
Área/Curso: administracao
Andamento: cursando

Re: Calculo II(FGV)

Mensagempor young_jedi » Sáb Fev 23, 2013 20:33

naão entendi direito as equações, elas são assim

y=40e^{-0,05x}

e

y=0,25x^3+x-5

???
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Calculo II(FGV)

Mensagempor bruno ken taniwaki » Dom Fev 24, 2013 00:09

Sim
bruno ken taniwaki
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Fev 23, 2013 15:31
Formação Escolar: GRADUAÇÃO
Área/Curso: administracao
Andamento: cursando

Re: Calculo II(FGV)

Mensagempor young_jedi » Dom Fev 24, 2013 13:26

como y é o preço de cada produto, então o preço total vai ser x.y
para calcular a receita se subtrai o preço de venda pelo de compra

R=x.40e^{-0,05x}-x(0,25x^3+x-5)

R=x.40^{-0,05x}-0,25x^4-x^2+5x

derivando

\frac{dR}{dx}=40.e^{-0,05x}-x.2.e^{-0,05x}-x^3-2x+5
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Calculo II(FGV)

Mensagempor bruno ken taniwaki » Dom Fev 24, 2013 14:30

Mas e depois disso o que q eu preciso fazer?
bruno ken taniwaki
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Fev 23, 2013 15:31
Formação Escolar: GRADUAÇÃO
Área/Curso: administracao
Andamento: cursando

Re: Calculo II(FGV)

Mensagempor bruno ken taniwaki » Dom Fev 24, 2013 14:59

Voce nessa questao voce nao fez o lucro e nao a receita
bruno ken taniwaki
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Fev 23, 2013 15:31
Formação Escolar: GRADUAÇÃO
Área/Curso: administracao
Andamento: cursando

Re: Calculo II(FGV)

Mensagempor young_jedi » Dom Fev 24, 2013 15:00

voce iguala a derivada a zero e resolve a equação

so que essa equação ai, eu não sei como resolver analiticamente, talvez so por um metodo computacional.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Calculo II(FGV)

Mensagempor bruno ken taniwaki » Dom Fev 24, 2013 17:25

mas o que voce fez nao foi o lucro?
a Receita nao é somente a primeira parte da equacao?
bruno ken taniwaki
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Fev 23, 2013 15:31
Formação Escolar: GRADUAÇÃO
Área/Curso: administracao
Andamento: cursando

Re: Calculo II(FGV)

Mensagempor young_jedi » Dom Fev 24, 2013 18:18

é verdade
a receita é so

R=x.40e^{-0,05x}

derivando

\frac{dR}{dx}=40e^{-0,05x}-2x.e^{-0,05x}

2e^{-0,05x}(20-x)=0

então x=20
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}