• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo II(FGV)

Calculo II(FGV)

Mensagempor bruno ken taniwaki » Sáb Fev 23, 2013 15:40

Suponha que x unidades de certo produto sejam vendidas quando o preço de cada unidade y é igual a y=40eˆ-0.05 x reais e que o mesmo numero de unidades seja fornecido pelo fabricante quando o preço de cada unidade y é giual a y=0.25xˆ3+x-5 reais
a) Determine a quantidade e o preço de equilibrio
b) Qual é a maxima receita que pode ser obtida?

igualei os dois y

y=y
joguei ln dos dois lados e depois derivei

e deu o resultado

-0.05=3(0.25x)+1/0.25xˆ3+x-5
xˆ3+60xˆ2+4x+60

Essa equacao eu nao consegui resolver, por favor me ajudem
bruno ken taniwaki
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Fev 23, 2013 15:31
Formação Escolar: GRADUAÇÃO
Área/Curso: administracao
Andamento: cursando

Re: Calculo II(FGV)

Mensagempor young_jedi » Sáb Fev 23, 2013 20:33

naão entendi direito as equações, elas são assim

y=40e^{-0,05x}

e

y=0,25x^3+x-5

???
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Calculo II(FGV)

Mensagempor bruno ken taniwaki » Dom Fev 24, 2013 00:09

Sim
bruno ken taniwaki
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Fev 23, 2013 15:31
Formação Escolar: GRADUAÇÃO
Área/Curso: administracao
Andamento: cursando

Re: Calculo II(FGV)

Mensagempor young_jedi » Dom Fev 24, 2013 13:26

como y é o preço de cada produto, então o preço total vai ser x.y
para calcular a receita se subtrai o preço de venda pelo de compra

R=x.40e^{-0,05x}-x(0,25x^3+x-5)

R=x.40^{-0,05x}-0,25x^4-x^2+5x

derivando

\frac{dR}{dx}=40.e^{-0,05x}-x.2.e^{-0,05x}-x^3-2x+5
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Calculo II(FGV)

Mensagempor bruno ken taniwaki » Dom Fev 24, 2013 14:30

Mas e depois disso o que q eu preciso fazer?
bruno ken taniwaki
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Fev 23, 2013 15:31
Formação Escolar: GRADUAÇÃO
Área/Curso: administracao
Andamento: cursando

Re: Calculo II(FGV)

Mensagempor bruno ken taniwaki » Dom Fev 24, 2013 14:59

Voce nessa questao voce nao fez o lucro e nao a receita
bruno ken taniwaki
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Fev 23, 2013 15:31
Formação Escolar: GRADUAÇÃO
Área/Curso: administracao
Andamento: cursando

Re: Calculo II(FGV)

Mensagempor young_jedi » Dom Fev 24, 2013 15:00

voce iguala a derivada a zero e resolve a equação

so que essa equação ai, eu não sei como resolver analiticamente, talvez so por um metodo computacional.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Calculo II(FGV)

Mensagempor bruno ken taniwaki » Dom Fev 24, 2013 17:25

mas o que voce fez nao foi o lucro?
a Receita nao é somente a primeira parte da equacao?
bruno ken taniwaki
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Fev 23, 2013 15:31
Formação Escolar: GRADUAÇÃO
Área/Curso: administracao
Andamento: cursando

Re: Calculo II(FGV)

Mensagempor young_jedi » Dom Fev 24, 2013 18:18

é verdade
a receita é so

R=x.40e^{-0,05x}

derivando

\frac{dR}{dx}=40e^{-0,05x}-2x.e^{-0,05x}

2e^{-0,05x}(20-x)=0

então x=20
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}