por RenatoP » Qui Fev 21, 2013 16:40
Olá,
Estou com o seguinte problema:
Calcular a integral

sendo R a região interna a circunferência de centro (0,1) e raio 1, e entre as retas y=x e x=0 (usar coordenadas polares).
A área é essa:

Minha primeira tentativa foi dividir em duas regiões R1 e R2, sendo:
R1: O quarto de circulo superior, ficando:

e

R2: O quarto de cirulo inferior, ficando:

Porém eu esbarro na hora de definir os limites do "r", pois a reta x=y eu não consigo transformar para polar.
Alguma dica para me ajudar?
-
RenatoP
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Seg Jul 09, 2012 18:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Controle e Automação
- Andamento: cursando
por young_jedi » Sex Fev 22, 2013 00:40
nos temos que a circunferencia tem equação

em cooredenada polares



como a intersecção da reta se com a circunferencia se da em (1,1)
então neste ponto o angulo teta é igual a 45º
portanto a integral sera


-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por RenatoP » Sex Fev 22, 2013 10:40
Humm.. é bem mais fácil do que eu estava pensando hehe
Consegui a resposta:

Estou correto?
Obrigado, ate mais...
-
RenatoP
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Seg Jul 09, 2012 18:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Controle e Automação
- Andamento: cursando
por young_jedi » Sex Fev 22, 2013 12:25
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral Dupla em coordenadas polares
por Sobreira » Qua Jun 19, 2013 01:30
- 0 Respostas
- 1344 Exibições
- Última mensagem por Sobreira

Qua Jun 19, 2013 01:30
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo de integral dupla por coordenadas polares
por Fernandobertolaccini » Sex Jan 16, 2015 22:13
- 0 Respostas
- 1581 Exibições
- Última mensagem por Fernandobertolaccini

Sex Jan 16, 2015 22:13
Cálculo: Limites, Derivadas e Integrais
-
- Integral dupla (Polares)
por rubenesantos » Dom Set 09, 2012 14:51
- 9 Respostas
- 5075 Exibições
- Última mensagem por rubenesantos

Seg Set 10, 2012 15:25
Cálculo: Limites, Derivadas e Integrais
-
- Integral, coordenadas polares
por manuoliveira » Sáb Nov 24, 2012 19:15
- 2 Respostas
- 1974 Exibições
- Última mensagem por manuoliveira

Dom Nov 25, 2012 21:11
Cálculo: Limites, Derivadas e Integrais
-
- Calculo de integral tripla com coordenadas polares
por Fernandobertolaccini » Qua Jan 21, 2015 11:05
- 0 Respostas
- 1285 Exibições
- Última mensagem por Fernandobertolaccini

Qua Jan 21, 2015 11:05
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.