• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Produto Interno

Produto Interno

Mensagempor Claudin » Qua Fev 20, 2013 02:01

Calcule

||f(t)+g(t)||

Definição do produto interno: \int_{0}^{1}f(t)g(t)dt

g(t)=t^3+t+1 e f(t)=2
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Produto Interno

Mensagempor LuizAquino » Qua Fev 20, 2013 09:33

Claudin escreveu:Calcule

||f(t)+g(t)||

Definição do produto interno: \int_{0}^{1}f(t)g(t)dt

g(t)=t^3+t+1 e f(t)=2


Como você já deve saber, temos que uma das propriedades do produto interno é:

\langle u,\,u \rangle = \|u\|^2

Usando então essa propriedade, temos que:

\langle f(t)+g(t),\,f(t)+g(t) \rangle = \|f(t) + g(t)\|^2

Usando a definição de produto interno que foi dada, temos que:

\int_0^1 [f(t)+g(t)][f(t)+g(t)]\, dt = \|f(t) + g(t)\|^2

Substituindo as expressões de f(t) e g(t) que foram dadas, podemos obter:

\int_0^1 \left(t^3 + t + 3\right)^2\, dt = \|f(t) + g(t)\|^2

Agora tente concluir o exercício a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Produto Interno

Mensagempor Claudin » Qua Fev 20, 2013 10:08

O correto nao seria

||f(t)+g(t)||=\sqrt[]{<f(t)+g(t)>}=

\sqrt[]{(<f(t),f(t)>+2<f(t)+g(t)+<g(t)+g(t)>)}
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Produto Interno

Mensagempor LuizAquino » Qua Fev 20, 2013 10:27

Claudin escreveu:O correto nao seria

||f(t)+g(t)||=\sqrt[]{<f(t)+g(t)>}=

\sqrt[]{(<f(t),f(t)>+2<f(t)+g(t)+<g(t)+g(t)>)}


Apenas corrigindo o que você escreveu, temos que:

||f(t)+g(t)||=\sqrt[]{\langle f(t)+g(t),\,f(t)+g(t)\rangle}=

\sqrt[]{\langle f(t),\,f(t)\rangle+2\langle f(t),\,g(t)\rangle+\langle g(t),\,g(t)\rangle}


Agora pense um pouco... Se você sabe que \langle u,\,u \rangle = \|u\|^2 , então fica claro que \|u\| = \sqrt{\langle u,\,u \rangle} . Desse modo, você pode usar qualquer uma das duas formas.

E pesando mais um pouco, você pode perceber que:

\int_0^1 [f(t)+g(t)][f(t)+g(t)]\, dt = \int_0^1 f(t)f(t) +2f(t)g(t) + g(t)g(t)\, dt

= \int_0^1 f(t)f(t)\,dt + 2\int_0^1 f(t)g(t)\,dt + \int_0^1 g(t)g(t)\, dt

= \langle f(t),\,f(t) \rangle + 2\langle f(t),\,g(t) \rangle + \langle g(t),\,g(t) \rangle

Conclusão: o que eu fiz é equivalente ao que você tentou dizer.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.