• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Produto Interno

Produto Interno

Mensagempor Claudin » Sáb Fev 16, 2013 15:50

Sabendo que ||u||=3 e ||v||=5, com u e v elementos de um espaço euclidiano, determine \alpha e \Re (alpha pertencente aos reais), de maneira que <u+\alpha v, u-\alpha v>=0

Se alguém puder ajudar nesta questão.

Obrigado
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Produto Interno

Mensagempor young_jedi » Ter Fev 19, 2013 20:46

supondo o elemento u como sendo

u=(u_1,u_2,u_3,\dots,u_n)

e

v=(v_1,v_2,v_3,\dots,v_n)

então

<u+\alpha v,u-\alpaha v>=(u_1+\alpha v_1)(u_1-\alpha v_1)+(u_2+\alpha v_2)(u_2-\alpha v_2)+(u_3+\alpha v_3)(u_3-\alpha v_3)+\dots+(u_n+\alpha v_1)(u_n-\alpha v_n)

<u+\alpha v,u-\alpaha v>=u_1^2-\alpha^2.v_1^2+u_2^2-\alpha^2.v_2^2+u_3^2-\alpha^2.v_3^2+\dots+u_n^2-\alpha^2.v_n1^2

<u+\alpha v,u-\alpaha v>=(u_1^2+u_2^2+u_3^2+\dots+u_n^2)-\alpha^2.(v_1^2+v_2^2+v_3^2+\dots+v_n^2)

<u+\alpha v,u-\alpaha v>=\|u\|^2-\alpha^2.\|v\|^2

<u+\alpha v,u-\alpaha v>=3^2-\alpha^2.5^2

3^2-\alpha^2.5^2=0

\alpha=\pm\frac{3}{5}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Produto Interno

Mensagempor Claudin » Ter Fev 19, 2013 21:05

Obrigado
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.