por Thais Aquino Lima » Ter Fev 12, 2013 08:23
Olá Professores,tudo bem?
Gostaria de saber se na radiciação,após multiplicamos o numerados e o denominador por este denominador irracional devemos colocar como denominador o número elevado ao quadrado ou simplesmente o resultado da multiplicação?Por exemplo:
Devemos proceder desta maneira
![\frac{2}{\sqrt[]{2}} . \frac{\sqrt[]{2}}{\sqrt[]{2}} = \frac{2\sqrt[]{2}}{\sqrt[]{2.2}}= \frac{2\sqrt[]{2}}{\sqrt[]{{2}^{2}}} = \frac{2\sqrt[]{2}}2 \frac{2}{\sqrt[]{2}} . \frac{\sqrt[]{2}}{\sqrt[]{2}} = \frac{2\sqrt[]{2}}{\sqrt[]{2.2}}= \frac{2\sqrt[]{2}}{\sqrt[]{{2}^{2}}} = \frac{2\sqrt[]{2}}2](/latexrender/pictures/c731a53b066f5545813dfa0e52787473.png)
![\frac{2}{\sqrt[]{2}} . \frac{\sqrt[]{2}}{\sqrt[]{2}} = \frac{2\sqrt[]{2}}{\sqrt[]{2.2}}= \frac{2\sqrt[]{2}}{\sqrt[]{{2}^{2}}} = \frac{2\sqrt[]{2}}2 \frac{2}{\sqrt[]{2}} . \frac{\sqrt[]{2}}{\sqrt[]{2}} = \frac{2\sqrt[]{2}}{\sqrt[]{2.2}}= \frac{2\sqrt[]{2}}{\sqrt[]{{2}^{2}}} = \frac{2\sqrt[]{2}}2](/latexrender/pictures/c731a53b066f5545813dfa0e52787473.png)
Ou desta maneira:
![\frac{2}{\sqrt[]{2}} . \frac{\sqrt[]{2}}{\sqrt[]{2}} = \frac{2\sqrt[]{2}}{\sqrt[]{2.2}} = \frac{2\sqrt[]{2}}{\sqrt[]{4}} = \frac{2\sqrt[]{2}}{2} \frac{2}{\sqrt[]{2}} . \frac{\sqrt[]{2}}{\sqrt[]{2}} = \frac{2\sqrt[]{2}}{\sqrt[]{2.2}} = \frac{2\sqrt[]{2}}{\sqrt[]{4}} = \frac{2\sqrt[]{2}}{2}](/latexrender/pictures/788e07cccdd76d59404131bfae9c5395.png)
Anteriormente eu havia colocado a operação incorreta

!Já realizei a correção!
Agradeço desde então
Abraços
Thais
Editado pela última vez por
Thais Aquino Lima em Ter Fev 12, 2013 11:46, em um total de 1 vez.
-
Thais Aquino Lima
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Fev 11, 2013 11:44
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: 8º ano
- Andamento: cursando
por DanielFerreira » Ter Fev 12, 2013 11:07
Oi
Thais,
Thais Aquino Lima escreveu:Gostaria de saber se na radiciação,após multiplicamos o numerados e o denominador por este denominador irracional devemos colocar como denominador o número elevado ao quadrado ou simplesmente o resultado da multiplicação?Por exemplo:
No final, acaba dando o mesmo resultado. Por isso, tanto faz!
Destaco que, há um lapso em suas contas - NUMERADOR.
Como pode notar, o numerador e o denominador são iguais, então, os cálculos são os mesmos, veja:

Até a próxima!
Daniel.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Thais Aquino Lima » Ter Fev 12, 2013 11:43
Obrigado pela resposta!
Realmente,coloquei uma raiz onde não havia!O formato correto é o seguinte:
![\frac{2}{\sqrt[]{2}} . \frac{\sqrt[]{2}}{\sqrt[]{2}} = \frac{2\sqrt[]{2}}{\sqrt[]{2.2}}= \frac{2\sqrt[]{2}}{\sqrt[]{{2}^{2}}} = \frac{2\sqrt[]{2}}2 \frac{2}{\sqrt[]{2}} . \frac{\sqrt[]{2}}{\sqrt[]{2}} = \frac{2\sqrt[]{2}}{\sqrt[]{2.2}}= \frac{2\sqrt[]{2}}{\sqrt[]{{2}^{2}}} = \frac{2\sqrt[]{2}}2](/latexrender/pictures/c731a53b066f5545813dfa0e52787473.png)
Mas sua resposta foi a que eu precisava!
Abraços
Thais
-
Thais Aquino Lima
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Fev 11, 2013 11:44
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: 8º ano
- Andamento: cursando
por DanielFerreira » Ter Fev 12, 2013 11:48
Ah!

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Thais Aquino Lima » Ter Fev 12, 2013 12:21
danjr5 escreveu:Ah!

Exatamente!Muito obrigado pela ajuda Daniel
Abraços
-
Thais Aquino Lima
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Fev 11, 2013 11:44
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: 8º ano
- Andamento: cursando
por DanielFerreira » Ter Fev 12, 2013 17:29
Não há de quê e volte quando precisar, e, responda quando souber!
Daniel.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- racionalização de denominadores
por Claudia Silva » Qua Jun 22, 2011 21:15
- 1 Respostas
- 1659 Exibições
- Última mensagem por FilipeCaceres

Qua Jun 22, 2011 22:10
Álgebra Elementar
-
- Racionalização de denominadores
por LuizCarlos » Qua Mai 09, 2012 15:10
- 2 Respostas
- 1723 Exibições
- Última mensagem por LuizCarlos

Qua Mai 09, 2012 18:54
Álgebra Elementar
-
- racionalização de denominadores
por cafinfa » Dom Mai 20, 2012 16:43
- 3 Respostas
- 2761 Exibições
- Última mensagem por Molina

Dom Mai 20, 2012 17:19
Sistemas de Equações
-
- racionalização de denominadores
por cafinfa » Dom Mai 20, 2012 17:16
- 1 Respostas
- 1348 Exibições
- Última mensagem por DanielFerreira

Dom Mai 20, 2012 17:21
Álgebra Elementar
-
- Racionalização de denominadores
por Tibinhas » Seg Jun 25, 2012 19:24
- 3 Respostas
- 2613 Exibições
- Última mensagem por Arkanus Darondra

Sáb Jul 07, 2012 22:29
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.