• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral do impulso

Integral do impulso

Mensagempor delara » Sáb Fev 02, 2013 10:35

Bom dia.

Estou com um pouco de dúvidas quanto a calcular a integral:

\int\limits_{-\infty}^{+\infty}~\delta((t-2)/5)dt

De forma generalizada, integrando o impulso(ou a distribuição Delta de Dirac) de {-\infty} até {+\infty} obtenho a função degrau unitário(função de Heaviside):

De forma geral:

u(t) = \begin{cases}
 1, & t > 0 \\
 0, & t < 0
\end{cases}

Neste caso, a função está temporalmente deslocada em (t-2).

Usei o wolframalpha para ver o resultado, mas não entendi o porque do resultado ser igual a 5.

Como o divisor do argumento de \delta "passou" como produto?

Muito obrigado!
delara
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jan 31, 2013 09:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Exatas/Engenharia
Andamento: cursando

Re: Integral do impulso

Mensagempor delara » Sáb Fev 02, 2013 10:47

Desculpem o incômodo.

Já encontrei uma solução:

Utilizando a propriedade de escala:

\delta(a(t-t_0)) = \frac{1}{|a|} \delta(t-t_0)

Portanto:

\delta\left(\frac{(t-2)}{5}\right) = \delta\left(\frac{1}{5}(t-2)\right) = \frac{1}{|\frac{1}{5}|}\delta(t-2) = 5\delta(t-2)

Portanto integrando no mesmo problema, sobrará a constante 5.

:)
delara
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jan 31, 2013 09:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Exatas/Engenharia
Andamento: cursando

Re: Integral do impulso

Mensagempor Russman » Sáb Fev 02, 2013 12:57

Exibir a dúvida é uma ótima forma de pensar mais sobre ela! hahah
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}