por Ge_dutra » Qua Jan 30, 2013 23:38
Boa noite, peço auxilio para resolver uma questão:

O gabarito é zero, porém, penso que o argumento do cosseno, quando x tender a zero, vai tender ao infinito, portanto não existindo.
Então não existiria também a multiplicação de zero(senx) por um cosseno não existente.
Gostaria de saber se estou pensando errado, ou se tenho que reescrever o limite, de modo a não modificá-lo.
Desde já, agradeço.
-
Ge_dutra
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Seg Jan 28, 2013 09:45
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por e8group » Qui Jan 31, 2013 15:01
Basta notar que a função cosseno é
limitada i.e.,

.Portanto ,tome o produto dos limites e conclua que o limite do seno é zero.
Outra forma seria estabelcer uma desigualdade entre funções de forma que os limites dos extremos existam e sejam iguais e aplicar o
teorema do confrontoPara obter isto , inicialmente vamos considerar

e

. Veja porque ,

.Multiplicando-se a desigualdade por

,temos :

e como

pelo
teorema do confronto concluímos que

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Ge_dutra » Qui Jan 31, 2013 22:30
santhiago escreveu:Basta notar que a função cosseno é
limitada i.e.,

.Portanto ,tome o produto dos limites e conclua que o limite do seno é zero.
Outra forma seria estabelcer uma desigualdade entre funções de forma que os limites dos extremos existam e sejam iguais e aplicar o
teorema do confrontoPara obter isto , inicialmente vamos considerar

e

. Veja porque ,

.Multiplicando-se a desigualdade por

,temos :

e como

pelo
teorema do confronto concluímos que

.
Acho que entendi, obrigada.
-
Ge_dutra
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Seg Jan 28, 2013 09:45
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 4842 Exibições
- Última mensagem por Ronaldobb

Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] limite trigonométrico quando x tende ao infinito
por Ge_dutra » Seg Jan 28, 2013 10:13
- 2 Respostas
- 7027 Exibições
- Última mensagem por Ge_dutra

Ter Jan 29, 2013 14:20
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] calculo de limite trigonométrico
por PRADO » Dom Mai 22, 2016 17:01
- 2 Respostas
- 5449 Exibições
- Última mensagem por PRADO

Sex Jun 03, 2016 23:25
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite trigonométrico
por _bruno94 » Qui Jun 06, 2013 13:39
- 2 Respostas
- 1998 Exibições
- Última mensagem por _bruno94

Sáb Jun 08, 2013 19:31
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite Trigonométrico
por viniciushenrique1995 » Ter Out 28, 2014 00:20
- 1 Respostas
- 1769 Exibições
- Última mensagem por adauto martins

Ter Out 28, 2014 17:11
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Funções
Autor:
Emilia - Sex Dez 03, 2010 13:24
Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.