• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] limite trigonometrico

[Limite] limite trigonometrico

Mensagempor Ge_dutra » Qua Jan 30, 2013 23:38

Boa noite, peço auxilio para resolver uma questão:

\lim_{x\rightarrow0}senx.cos\left(\frac{1}{x} \right)

O gabarito é zero, porém, penso que o argumento do cosseno, quando x tender a zero, vai tender ao infinito, portanto não existindo.
Então não existiria também a multiplicação de zero(senx) por um cosseno não existente.

Gostaria de saber se estou pensando errado, ou se tenho que reescrever o limite, de modo a não modificá-lo.

Desde já, agradeço.
Ge_dutra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Jan 28, 2013 09:45
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Limite] limite trigonometrico

Mensagempor e8group » Qui Jan 31, 2013 15:01

Basta notar que a função cosseno é limitada i.e., \forall x \in \mathbb{R} - \{0\} \implies  | cos(1/x)| \leq 1 .Portanto ,tome o produto dos limites e conclua que o limite do seno é zero.

Outra forma seria estabelcer uma desigualdade entre funções de forma que os limites dos extremos existam e sejam iguais e aplicar o teorema do confronto
Para obter isto , inicialmente vamos considerar g(x) = sin(x) e h(x) =  - sin(x) . Veja porque , 1 \geq cos(1/x) \geq -1  , \forall x \in \mathbb{R}- \{0\} .Multiplicando-se a desigualdade por sin(x)  ,  x \neq 0 ,temos :

sin(x) \geq sin(x) cos(1/x) \geq - sin(x) e como \lim_{x\to0} g(x) = \lim_{x\to0} h(x) = 0 pelo
teorema do confronto concluímos que \lim_{x\to0} sin(x) cos(1/x) = 0 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limite] limite trigonometrico

Mensagempor Ge_dutra » Qui Jan 31, 2013 22:30

santhiago escreveu:Basta notar que a função cosseno é limitada i.e., \forall x \in \mathbb{R} - \{0\} \implies  | cos(1/x)| \leq 1 .Portanto ,tome o produto dos limites e conclua que o limite do seno é zero.

Outra forma seria estabelcer uma desigualdade entre funções de forma que os limites dos extremos existam e sejam iguais e aplicar o teorema do confronto
Para obter isto , inicialmente vamos considerar g(x) = sin(x) e h(x) =  - sin(x) . Veja porque , 1 \geq cos(1/x) \geq -1  , \forall x \in \mathbb{R}- \{0\} .Multiplicando-se a desigualdade por sin(x)  ,  x \neq 0 ,temos :

sin(x) \geq sin(x) cos(1/x) \geq - sin(x) e como \lim_{x\to0} g(x) = \lim_{x\to0} h(x) = 0 pelo
teorema do confronto concluímos que \lim_{x\to0} sin(x) cos(1/x) = 0 .



Acho que entendi, obrigada.
Ge_dutra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Jan 28, 2013 09:45
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.