• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Plana - Triângulo Isósceles] Baricentro

[Geometria Plana - Triângulo Isósceles] Baricentro

Mensagempor raimundoocjr » Seg Jan 28, 2013 15:31

01. Qual o valor, em unidades de comprimento, que separa o baricentro do ponto A?
Imagem

Respsota: 2.\sqrt[]{2}

Tive uma idéia de inciar com Geometria Analítica, colocando os eixos "x" e "y" iniciando do ponto A (vértice), mas a continuação não está tão clara ainda. Talvez estabelecendo retas, reta perpendicular e distância entre ponto e reta, eu consiga.

Já agradeço.
Editado pela última vez por raimundoocjr em Qua Jan 30, 2013 13:56, em um total de 1 vez.
raimundoocjr
 

Re: [Geometria Plana - Triângulo Isósceles] Baricentro

Mensagempor sauloandrade » Seg Jan 28, 2013 18:24

Eu fiz que nem você, começei por Geometria Analítica e continuei com os cálculos:
Imagem

Se alguém souber fazer por geometria plana sem utilizar os conceitos de geometria analítica por favor poste a resolução por que fiquei curioso agora :)
sauloandrade
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Out 28, 2012 12:03
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Geometria Plana - Triângulo Isósceles] Baricentro

Mensagempor Molina » Seg Jan 28, 2013 18:26

Boa tarde, Raimundo.

Seja G=(x_G,y_G) o baricentro do triângulo ABC. Utilize a formula para encontrar as coordenadas deste ponto:

x_G = \frac{x_A + x_B + x_C}{3}

e

y_G = \frac{y_A + y_B + y_C}{3}

Depois, prossiga como você estava pensando, colocando-o no plano cartesiano e faça a distância da origem até o ponto G.


Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: [Geometria Plana - Triângulo Isósceles] Baricentro

Mensagempor raimundoocjr » Seg Jan 28, 2013 18:40

Valeu Molina, fico grato. Mas, tenho curiosidade como o Saulo em saber como resolver apenas por Geometria Plana, se for possível é claro. Como proceder em exercícios assim, seria, talvez, mais fácil com duas visões distintas. :y:
raimundoocjr
 

Re: [Geometria Plana - Triângulo Isósceles] Baricentro

Mensagempor Molina » Seg Jan 28, 2013 19:27

Boa tarde.

raimundoocjr escreveu:Valeu Molina, fico grato. Mas, tenho curiosidade como o Saulo em saber como resolver apenas por Geometria Plana, se for possível é claro. Como proceder em exercícios assim, seria, talvez, mais fácil com duas visões distintas. :y:


Seja H a altura deste triângulo isósceles. Temos a incrível propriedade que o baricentro G divide a altura em razões \frac{1}{3}H e \frac{2}{3}H.

Ou seja, por Pitágoras descobrimos que a altura H do triângulo é 6. Desta forma, a distância do Baricentro ao ponto C é 4 e a distância do baricentro à base AB é 2. Formamos um novo triângulo retângulo de catetos 2 e hipotenusa X, que queremos descobrir.


Ficou mais fácil agora? :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: [Geometria Plana - Triângulo Isósceles] Baricentro

Mensagempor raimundoocjr » Seg Jan 28, 2013 19:38

Ficou sim. Eu me recordava sobre a propriedade, mas ela usava mais nos triângulos equiláteros. De qualquer forma esclareceu a resolução. :y:
raimundoocjr
 


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.