• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral com aplicaçao

Integral com aplicaçao

Mensagempor menino de ouro » Dom Jan 20, 2013 15:31

Pessoal eu queria uma ajuda para entender como se resolve essas questões para que eu possa sair bem na prova,acho que estou estudando matemática muito mecanicamente, só pelas respostas ou exemplos , sem entendimento. ai quando chega na hora da prova eu agarro!!

1)Esboce a regi ?o e ache a areá da região compreendida entre:

a)os gráficos de f (x) = x^2 e g(x)= \frac{x^2}{2}+2
b)os graficos de f(x) = x^2   e,    g(x) = 1-x^2
c)os graficos de f(x) = x^2   e  , g(x)= 1-x^2    \:e , a  ,      reta , y=2

2) esboce o conjunto D e ache a area de D,nos seguintes casos
a) D = ( x,y) \inR^2  ; x^2  -1 \leqy \leq(y)\leq(0)
b) D = ( x,y) \inR^2 ; R^2  ; 0\leqy \leq(y)\leq(9-x^2)
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: Integral com aplicaçao

Mensagempor Russman » Dom Jan 20, 2013 20:25

Vou fazer a 1° de exemplo, você tente fazer as outras e vá expondo suas dúvidas aqui que o ajudaremos.

A primeira coisa interessante a fazer é esboçar os gráficos das funções para VIZUALIZAR a região delimitada por elas, isto é, por suas intersecções.

As funções são f(x) = x^2, em verde, e g(x) = \frac{x^2}{2} + 2, em vermelho.

graph.gif
graph
graph.gif (5.81 KiB) Exibido 3775 vezes


A primeira coisa a fazer é determinar os pontos de intersecção. Para estes temos f(x) = g(x), de modo que

x^2 = \frac{x^2}{2} + 2 \Rightarrow x^2 - \frac{x^2}{2} =2 \Rightarrow \frac{x^2}{2} = 2 \Rightarrow x^2 = 4 \Rightarrow x = \left\{\begin{matrix}
-2\\ 
2
\end{matrix}\right.

Assim, as funções se intersectam nos pontos (-2,4) e (2,4)

Agora, se tomarmos a área entre o eixo x e a função g(x) e subtrairmos da área entre o eixo x e a função f(x) no intervalo [-2,2] teremos isolado a região de interesse.

Assim, basta fazer

S = \int_{-2}^{2}\frac{x^2}{2}+2 dx - \int_{-2}^{2}x^2 dx

Note que esta região é equivalente a

\int_{-2}^{2}\frac{x^2}{2}+2 dx - \int_{-2}^{2}x^2 dx = \int_{-2}^{2}\left ( \frac{x^2}{2}+2-x^2 \right )dx = \int_{-2}^{2}\left ( -\frac{x^2}{2}+2 \right )dx

Agora integre, aplique os limites e está feito.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Integral com aplicaçao

Mensagempor menino de ouro » Dom Jan 20, 2013 23:10

x^2estava estudando , e entendi o desenvolvimento , porem no finalzinho onde foi parar o x^2
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: Integral com aplicaçao

Mensagempor Russman » Dom Jan 20, 2013 23:30

Ele não some. Você faz a operação:

\frac{x^2}{2} - x^2 = - \frac{x^2}{2}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Integral com aplicaçao

Mensagempor menino de ouro » Dom Jan 20, 2013 23:35

ok,
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: Integral com aplicaçao

Mensagempor menino de ouro » Dom Jan 20, 2013 23:49

quando eu tenho duas funções no caso f(x) e g(x) sempre irei igualar para achar os pontos de intercessão? ou não

no caso da letra a) do numero 2 eu só tenho a função y é isso ou não?
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: Integral com aplicação (Areá)

Mensagempor menino de ouro » Qui Jan 24, 2013 23:34

como resolvo?


gráfico de f(x)=x^2    e ,   g(x)= 1-x^2
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D