por Russman » Qui Jan 17, 2013 19:21
Achei esta questão interessante pelo mix de probabilidade e geometria e pensei em compartilhar com vocês.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por young_jedi » Sex Jan 18, 2013 12:07
o lado do hexagono mede x
assim sua area é

ja o lado do triangulo pode se calculado por


portanto a area do triangulo é

a area fora do triangulo é igual a

então a probabilidade sera


-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por ant_dii » Sex Jan 18, 2013 16:39
É interessante este problema... O lado probabilidade somente serve para enfatizar o lado geometria do problema.
Veja que se você chamar de

o lado do Hexágono, a área do Hexágono será a área de seis triângulos equiláteros que o compõe, uma vez que este é regular. Logo, teremos que há seis triângulos de lados medindo

... onde h é a altura de um dos triângulos que compõe o Hexágono regular que coincide com sua apótema, ou seja,

... Logo a área de um dos triângulos será

... Portanto a área do Hexágono será

Considerando a circunferência inscrita ao Hexágono e circunscrita ao Triângulo equilátero, seu raio é igual a apótema do Hexágono, ou seja,

.
Temos que a apótema do Triângulo (

) mede

da altura do Triângulo (

), ou seja,

(essa é uma propriedade dos triângulos equiláteros onde o Ortocentro coincide com o Baricentro). Mas o raio da circunferência mede

da altura do Triângulo equilátero dado, ou seja,

.
Destas afirmações temos que

.
Considerando que o Triângulo equilátero tem lado

, temos que a área é

.
Nosso objetivo é determinar a área do Triângulo equilátero em função do raio da circunferência. Temos que:

Logo,

Como

, obtemos a seguinte igualdade:

Logo, a área do Triângulo equilátero em função do raio da circunferência é

O objetivo agora é colocar a área do Triângulo equilátero em função do lado do Hexágono.
Como

(lá do início) e

, temos

Logo, a área que o dardo pode acertar é dada fazendo

, então

Como a probabilidade é feita fazendo

, temos

Portanto, a probabilidade de acertar o dardo fora do triângulo é 62,5%.
Só os loucos sabem...
-
ant_dii
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qua Jun 29, 2011 19:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por Russman » Sex Jan 18, 2013 20:03
Boooa, amigos!
Achei muito interessante essa questão também. O pessoal do Instituto de Matemática que fez essa prova é sempre muito criativo.
Se eu conseguir mais questões legais como essa eu compartilho com vocês.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Probabilidade
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Funções] Questão interessante.
por Russman » Qui Jan 17, 2013 19:27
- 2 Respostas
- 1295 Exibições
- Última mensagem por Russman

Sex Jan 18, 2013 04:40
Funções
-
- [Questão Interessante]Recipiente
por Russman » Qui Mar 07, 2013 23:10
- 1 Respostas
- 1643 Exibições
- Última mensagem por e8group

Sex Mar 08, 2013 00:33
Funções
-
- [Progressão Geométrica] Questão interessante.
por Russman » Qui Jan 17, 2013 19:19
- 2 Respostas
- 1793 Exibições
- Última mensagem por Russman

Sex Jan 18, 2013 20:05
Progressões
-
- [Geometria Analítica] Questão interessante.
por Russman » Qui Jan 17, 2013 19:24
- 3 Respostas
- 2022 Exibições
- Última mensagem por Russman

Qui Jan 17, 2013 19:58
Geometria Analítica
-
- exercicio interessante(ajuda) Funçao exponencial
por Fabricio dalla » Sex Mar 18, 2011 13:28
- 2 Respostas
- 1852 Exibições
- Última mensagem por Fabricio dalla

Sex Mar 18, 2011 14:22
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.