• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Quadricas

Quadricas

Mensagempor manuel_pato1 » Sex Jan 18, 2013 00:34

Identificar e representar graficamente as superfícies expressas pelas equações nos intervalos dados:

a) \frac{x^2}{1} + \frac{y^2}{4}= \frac{-z}{3} no intervado -3\leq z \leq0

Alguém pode me dar uma luz? como devoo proceder para conseguir uma superfície somente no intervalo dado?
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Quadricas

Mensagempor Russman » Sex Jan 18, 2013 00:49

Isto é uma fatia de um parabolóide elíptico.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Quadricas

Mensagempor manuel_pato1 » Sex Jan 18, 2013 22:54

Ok, mas como eu procedo para resolver esse tipo de exerício, mostrando algebricamente que é um parabolóide elíptico?

tenho que chutar z= 0 , z= -3 e um valor intermediário entre o intervalo?
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Quadricas

Mensagempor Russman » Sex Jan 18, 2013 23:00

Não sei se a intenção é "mostrar algebricamente" que é um paraboloide elíptico. A curva dada por essa equação DEFINE-SE como um paraboloide elíptico. É um nome que se dá a esse tipo de curva com essa equação. Logo, basta reconhece-la.

O que você pode argumentar é que os denominadores de x² e y² são diferentes, logo é algo elíptico. E ainda como z aparece sem potência, nessa combinação, é um paraboloide.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Quadricas

Mensagempor manuel_pato1 » Sex Jan 18, 2013 23:08

Entendi cara. Brigadão hein!

Acho que onde eu tenho que chutar alguns valor é pra hora que eu for desenhar no R³
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Quadricas

Mensagempor Russman » Sex Jan 18, 2013 23:13

É, pra desenhar essa curva seria interessante, como pede, você delimita-la entre z=-3 e z=0. Substituindo esses valores na equação você vai ter a curva plana de x e y. Uma é uma elipse e outra um ponto.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.