• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema de cauchy EDO

Problema de cauchy EDO

Mensagempor thejotta » Sex Jan 11, 2013 10:10

Código: Selecionar todos
ty'+2y-cos(t)/t =0     y(t0)=y0


Ache uma solução dessa PVI(Problema de valor inicial)

tentei fazer da seguinte maneira reajustei a formula que ficou assim
Código: Selecionar todos
y'=(cos(t) - 2yt)/t^2   

depois tentei integrar cada lado da função mais não conseguir resolver e tambem não sei se estou indo pelo caminho certo.
alguem poderia me ajudar.
thejotta
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Seg Out 29, 2012 12:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Problema de cauchy EDO

Mensagempor young_jedi » Sex Jan 11, 2013 12:12

Nesta EDO voce tem que utilizar o metodo do fator integrante.

Não sei se voce ja estudou ete metodo de resolução, comente qualquer coisa.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Problema de cauchy EDO

Mensagempor thejotta » Sex Jan 11, 2013 13:07

Não ainda não estudei
thejotta
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Seg Out 29, 2012 12:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Problema de cauchy EDO

Mensagempor young_jedi » Sex Jan 11, 2013 15:09

vou tentar então te passar uma solução sem o uso do fator integrante

t.y'+2y-\frac{cos(t)}{t}=0

t.y'+2y=\frac{cos(t)}{t}

multiplicando a equação por t

t^2.y'+2.t.y=cos(t)

mais temos que

(t^2.y)'=2.t.y+t^2.y'

então

(t^2.y)'=cos(t)

integrando os dois lados da equação com relação a t teremos

t^2.y=\int cos(t)

t^2.y=sen(t)+C

y=\frac{sen(t)+C}{t^2}
Editado pela última vez por young_jedi em Sex Jan 11, 2013 18:15, em um total de 1 vez.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Problema de cauchy EDO

Mensagempor thejotta » Sex Jan 11, 2013 17:58

t^2.y'+2.t.y=cos(t)

mais temos que

(t^2.y)'=2.t.y+t^2.y //Não entendi o pq disso?

então

(t^2.y)'=cos(t)
thejotta
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Seg Out 29, 2012 12:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Problema de cauchy EDO

Mensagempor young_jedi » Sex Jan 11, 2013 18:14

é a derivada pela regra do produto

\frac{d(t^2.y)}{dt}=\frac{d(t^2)}{dt}y+t^2.\frac{dy}{dt}

\frac{d(t^2.y)}{dt}=2.t.y+t^2.\frac{dy}{dt}

(t^2.y)'=2.t.y+t^2.y'
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Problema de cauchy EDO

Mensagempor thejotta » Sex Jan 11, 2013 23:41

Muito obrigado mesmo... acabei tmb lendo sobre o metodo do fator integrante e conseguir resolver, mais ainda ficou uma duvida sobre a substituição do valor inicial.. como faz para achar Y(t0)=v0 e os valores de t0 r v0?
thejotta
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Seg Out 29, 2012 12:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Problema de cauchy EDO

Mensagempor young_jedi » Sáb Jan 12, 2013 09:53

substitua y0 e t0 na equação e encontre a constante c em função desses dois valores ai voce tera a equação completa
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Problema de cauchy EDO

Mensagempor thejotta » Dom Jan 13, 2013 11:22

Muito obrigado amigo
thejotta
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Seg Out 29, 2012 12:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59