• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema de cauchy EDO

Problema de cauchy EDO

Mensagempor thejotta » Sex Jan 11, 2013 10:10

Código: Selecionar todos
ty'+2y-cos(t)/t =0     y(t0)=y0


Ache uma solução dessa PVI(Problema de valor inicial)

tentei fazer da seguinte maneira reajustei a formula que ficou assim
Código: Selecionar todos
y'=(cos(t) - 2yt)/t^2   

depois tentei integrar cada lado da função mais não conseguir resolver e tambem não sei se estou indo pelo caminho certo.
alguem poderia me ajudar.
thejotta
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Seg Out 29, 2012 12:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Problema de cauchy EDO

Mensagempor young_jedi » Sex Jan 11, 2013 12:12

Nesta EDO voce tem que utilizar o metodo do fator integrante.

Não sei se voce ja estudou ete metodo de resolução, comente qualquer coisa.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Problema de cauchy EDO

Mensagempor thejotta » Sex Jan 11, 2013 13:07

Não ainda não estudei
thejotta
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Seg Out 29, 2012 12:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Problema de cauchy EDO

Mensagempor young_jedi » Sex Jan 11, 2013 15:09

vou tentar então te passar uma solução sem o uso do fator integrante

t.y'+2y-\frac{cos(t)}{t}=0

t.y'+2y=\frac{cos(t)}{t}

multiplicando a equação por t

t^2.y'+2.t.y=cos(t)

mais temos que

(t^2.y)'=2.t.y+t^2.y'

então

(t^2.y)'=cos(t)

integrando os dois lados da equação com relação a t teremos

t^2.y=\int cos(t)

t^2.y=sen(t)+C

y=\frac{sen(t)+C}{t^2}
Editado pela última vez por young_jedi em Sex Jan 11, 2013 18:15, em um total de 1 vez.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Problema de cauchy EDO

Mensagempor thejotta » Sex Jan 11, 2013 17:58

t^2.y'+2.t.y=cos(t)

mais temos que

(t^2.y)'=2.t.y+t^2.y //Não entendi o pq disso?

então

(t^2.y)'=cos(t)
thejotta
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Seg Out 29, 2012 12:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Problema de cauchy EDO

Mensagempor young_jedi » Sex Jan 11, 2013 18:14

é a derivada pela regra do produto

\frac{d(t^2.y)}{dt}=\frac{d(t^2)}{dt}y+t^2.\frac{dy}{dt}

\frac{d(t^2.y)}{dt}=2.t.y+t^2.\frac{dy}{dt}

(t^2.y)'=2.t.y+t^2.y'
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Problema de cauchy EDO

Mensagempor thejotta » Sex Jan 11, 2013 23:41

Muito obrigado mesmo... acabei tmb lendo sobre o metodo do fator integrante e conseguir resolver, mais ainda ficou uma duvida sobre a substituição do valor inicial.. como faz para achar Y(t0)=v0 e os valores de t0 r v0?
thejotta
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Seg Out 29, 2012 12:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Problema de cauchy EDO

Mensagempor young_jedi » Sáb Jan 12, 2013 09:53

substitua y0 e t0 na equação e encontre a constante c em função desses dois valores ai voce tera a equação completa
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Problema de cauchy EDO

Mensagempor thejotta » Dom Jan 13, 2013 11:22

Muito obrigado amigo
thejotta
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Seg Out 29, 2012 12:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: