• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral de função racional

Integral de função racional

Mensagempor renan_a » Qua Jan 09, 2013 17:57

\int_ \frac{(x)}{(x^2 +1)(x-1))}dx

Galera, estou com sérias dificuldades com integrais por frações parciais, entretanto, as mais simples estou conseguindo fazer.
No entando, esta integral não estou conseguindo resolver.

se fosse x^2 no numerador, eu poderia fazer com A +(Bx+C) por que daria o grau, correto?
mas não sei como faço com essa...

Aproveitando o tópico, alguém me indica algum livro ou pdf que trate bem desse tópico em questão?

Abraços a todos.
renan_a
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Ter Set 25, 2012 08:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Integral de função racional

Mensagempor young_jedi » Qua Jan 09, 2013 20:16

separe da seguinte forma

\frac{A.x+B}{x^2+1}+\frac{C}{x-1}

dai teremos

\frac{(Ax+B)(x-1)+C.(x^2+1)}{(x^2+1)(x-1)}

\frac{Ax^2-Ax+Bx-B+Cx^2+C)}{(x^2+1)(x-1)}

\frac{(A+C)x^2+(B-A)x+C-B}{(x^2+1)(x-1)}

igualando as expressões teremos o sistema

\begin{cases}A+C=0\\B-A=1\\C-B=0\end{cases}

resolvendo temos

\begin{cases}A=-\frac{1}{2}\\B=\frac{1}{2}\\C=\frac{1}{2}\end{cases}

tente concluir
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Integral de função racional

Mensagempor renan_a » Qua Jan 09, 2013 22:05

Pô, meu velho... Sem palavras pra te agradecer, deu certinho. Depois do resultado das incógnitas, tudo saiu nos ''conformes''. Abraço
renan_a
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Ter Set 25, 2012 08:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: