• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Viviani » Qua Jan 09, 2013 14:30

\lim_{x\rightarrow0}\frac{\sqrt{x+2}+\sqrt{x+6}-\sqrt{6}-\sqrt{2}}{x}
Viviani
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Jan 09, 2013 13:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Limite

Mensagempor leilahomsi » Qua Jan 09, 2013 17:35

Sendo x = 0 basta substituir x por 0 , vai ficar assim

\lim_{x->0} = \frac{\sqrt[]{2} + \sqrt[]{6} - \sqrt[]{6} - \sqrt[]{2}}{0}

Resultando em \frac{0}{0}
leilahomsi
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jan 09, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. em Matematica
Andamento: cursando

Re: Limite

Mensagempor Viviani » Qui Jan 10, 2013 13:12

o resultado dessa questão é \frac{\sqrt{6}+\sqrt{2}}{4\sqrt{3}} , mas não consigo chegar nesse resultado :/
Viviani
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Jan 09, 2013 13:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Limite

Mensagempor e8group » Qui Jan 10, 2013 17:32

Dicas :
(1)
Reescreva a expressão inicial como \frac{\sqrt{2+x} - \sqrt{2}}{x} + \frac{\sqrt{6+x} - \sqrt{6}}{x} .

(2) Multiplique o numerador e o denominador pelo conjugado em (1) .

Utilize a propriedade a^2 - b^2 = (a-b)(a+b) em (2) .

Após isto basta tomar o limite .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)