• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Viviani » Qua Jan 09, 2013 14:30

\lim_{x\rightarrow0}\frac{\sqrt{x+2}+\sqrt{x+6}-\sqrt{6}-\sqrt{2}}{x}
Viviani
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Jan 09, 2013 13:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Limite

Mensagempor leilahomsi » Qua Jan 09, 2013 17:35

Sendo x = 0 basta substituir x por 0 , vai ficar assim

\lim_{x->0} = \frac{\sqrt[]{2} + \sqrt[]{6} - \sqrt[]{6} - \sqrt[]{2}}{0}

Resultando em \frac{0}{0}
leilahomsi
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jan 09, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. em Matematica
Andamento: cursando

Re: Limite

Mensagempor Viviani » Qui Jan 10, 2013 13:12

o resultado dessa questão é \frac{\sqrt{6}+\sqrt{2}}{4\sqrt{3}} , mas não consigo chegar nesse resultado :/
Viviani
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Jan 09, 2013 13:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Limite

Mensagempor e8group » Qui Jan 10, 2013 17:32

Dicas :
(1)
Reescreva a expressão inicial como \frac{\sqrt{2+x} - \sqrt{2}}{x} + \frac{\sqrt{6+x} - \sqrt{6}}{x} .

(2) Multiplique o numerador e o denominador pelo conjugado em (1) .

Utilize a propriedade a^2 - b^2 = (a-b)(a+b) em (2) .

Após isto basta tomar o limite .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59