• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Paridade para Funções Exp/Log

Paridade para Funções Exp/Log

Mensagempor Jhenrique » Qua Dez 26, 2012 21:35

Saudações estudantes!

É dito que uma função é par se:

f(-x)=f(x)

E que é impar se:

f(-x)=-f(x)

Para começar, penso que a definição rezada pela maioria já tá errada, pq "é par/impar se" não faz sentido dentro do meu universo sintático, o que faz sentido para mim é "é par/impar se satisfaz a seguinte condição ou ("ou" exclusivo aqui) goza da seguinte propriedade". Sem contar que é sempre demonstrado para f(-x) e nunca para f(+x). Claro, tudo isso são "meros detalhes". Não é à toa que uma criança uma criança de 8/9 anos não é capaz de aprender "matemática de nível médio ou superior", os eruditos não são nem capazes de verbalizar linguisticamente uma simples sentença.

Enfim, agora que já fiz minhas considerações iniciais, questiono: não está errado querer enquadrar a exponencial e logarítmica nas definições acima?

As definições acima são para variações aditivas tanto em x quanto em f(x). É óbvio que a exp e a log não iriam se enquadrar, pois tais funções relacionam variações aditivas com variações multiplicativas.

Certas funções exponenciais se enquadram em:

f(-x)=f(x)

f(-x)=\div f(x)

Aqui eu omito o elemento neutro da multiplicação, se podemos omitir o da adição pq não o da multiplicação?

E certas funções logarítmicas se enquadram em:

f(\div x)=f(x)

f(\div x)=-f(x)

Ora, pq as funções exp e log que gozam das propriedades descritas acima não merecem o título de par ou de impar? Disserte!

Obg!
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Paridade para Funções Exp/Log

Mensagempor young_jedi » Qui Dez 27, 2012 12:45

o fato das funções pares e impares ganharem uma nomenclatura, é porque ao observar seu grafico analisamos um certa simetria com relação ao eixo da ordenada para as funções pares, e uma simetria com relação aos eixos da ordenada e abscissa para as funções impares.

Neste exemplo que voce deu, até se poderia ter um denominação , mais não se veria uma simetria grafica para isso
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Paridade para Funções Exp/Log

Mensagempor Jhenrique » Qui Dez 27, 2012 22:23

Pois é, eu já pensei nisso que vc falou... no entanto, estou cogitando a possibilidade de estarmos interpretando de modo equivocado outra vez. Digo isso baseado na seguinte observação:

Tirei as médias aritmética e geométrica de 16 com os elementos neutros, veja como ficou graficamente em escala aritmética e em geométrica:
escalas.PNG

Notou como a escala lin (que eu gosto de chamar de aditiva ou aritmética) caiu como uma luva para a MA e como a escala log (que eu gosto de chamar de multiplicativa ou geométrica) caiu como uma luva para a MG?

O que a minha intuição me diz pra fazer é aplicar no eixo a escala apropriada para visualizar corretamente o gráfico. Isso significa que o eixo y poderia ser graduado assim: ··· a?³, a?², a?¹, aº, a¹, a², a³ ··· , tal que "a" pertence a quem? Bem, através de várias comparações rapidamente se percebe que "a" é um fator, e não uma parcela, e que ele não traz a noção de "0+a" ou de "0-a" e sim a noção de "1×a" ou de "1÷a". O que significa que se o eixo for graduado assim, então não haverá lugar para ··· —a?³, —a?², —a?¹, —aº, —a¹, —a², —a³ ··· , o que me deixa um pouco confuso...
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.