• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Paridade para Funções Exp/Log

Paridade para Funções Exp/Log

Mensagempor Jhenrique » Qua Dez 26, 2012 21:35

Saudações estudantes!

É dito que uma função é par se:

f(-x)=f(x)

E que é impar se:

f(-x)=-f(x)

Para começar, penso que a definição rezada pela maioria já tá errada, pq "é par/impar se" não faz sentido dentro do meu universo sintático, o que faz sentido para mim é "é par/impar se satisfaz a seguinte condição ou ("ou" exclusivo aqui) goza da seguinte propriedade". Sem contar que é sempre demonstrado para f(-x) e nunca para f(+x). Claro, tudo isso são "meros detalhes". Não é à toa que uma criança uma criança de 8/9 anos não é capaz de aprender "matemática de nível médio ou superior", os eruditos não são nem capazes de verbalizar linguisticamente uma simples sentença.

Enfim, agora que já fiz minhas considerações iniciais, questiono: não está errado querer enquadrar a exponencial e logarítmica nas definições acima?

As definições acima são para variações aditivas tanto em x quanto em f(x). É óbvio que a exp e a log não iriam se enquadrar, pois tais funções relacionam variações aditivas com variações multiplicativas.

Certas funções exponenciais se enquadram em:

f(-x)=f(x)

f(-x)=\div f(x)

Aqui eu omito o elemento neutro da multiplicação, se podemos omitir o da adição pq não o da multiplicação?

E certas funções logarítmicas se enquadram em:

f(\div x)=f(x)

f(\div x)=-f(x)

Ora, pq as funções exp e log que gozam das propriedades descritas acima não merecem o título de par ou de impar? Disserte!

Obg!
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Paridade para Funções Exp/Log

Mensagempor young_jedi » Qui Dez 27, 2012 12:45

o fato das funções pares e impares ganharem uma nomenclatura, é porque ao observar seu grafico analisamos um certa simetria com relação ao eixo da ordenada para as funções pares, e uma simetria com relação aos eixos da ordenada e abscissa para as funções impares.

Neste exemplo que voce deu, até se poderia ter um denominação , mais não se veria uma simetria grafica para isso
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Paridade para Funções Exp/Log

Mensagempor Jhenrique » Qui Dez 27, 2012 22:23

Pois é, eu já pensei nisso que vc falou... no entanto, estou cogitando a possibilidade de estarmos interpretando de modo equivocado outra vez. Digo isso baseado na seguinte observação:

Tirei as médias aritmética e geométrica de 16 com os elementos neutros, veja como ficou graficamente em escala aritmética e em geométrica:
escalas.PNG

Notou como a escala lin (que eu gosto de chamar de aditiva ou aritmética) caiu como uma luva para a MA e como a escala log (que eu gosto de chamar de multiplicativa ou geométrica) caiu como uma luva para a MG?

O que a minha intuição me diz pra fazer é aplicar no eixo a escala apropriada para visualizar corretamente o gráfico. Isso significa que o eixo y poderia ser graduado assim: ··· a?³, a?², a?¹, aº, a¹, a², a³ ··· , tal que "a" pertence a quem? Bem, através de várias comparações rapidamente se percebe que "a" é um fator, e não uma parcela, e que ele não traz a noção de "0+a" ou de "0-a" e sim a noção de "1×a" ou de "1÷a". O que significa que se o eixo for graduado assim, então não haverá lugar para ··· —a?³, —a?², —a?¹, —aº, —a¹, —a², —a³ ··· , o que me deixa um pouco confuso...
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: