• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite de função

Limite de função

Mensagempor ana » Sex Set 25, 2009 23:03

Boa noite!
Tenho uma dúvida com limite de função. Qnd o limite tende a 0 e ao infinito não consigo resolver a questão, pois a conta não pode conter o 0 no denominador. Qual a maneira de resolver a questão? Fórmula de Báskara?

obrigada.
ana
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Set 19, 2009 20:57
Formação Escolar: GRADUAÇÃO
Área/Curso: administração
Andamento: cursando

Re: Limite de função

Mensagempor marciommuniz » Sex Set 25, 2009 23:06

Olá, tente estudar sobre a regra L'Hopital. Acho o meio mais fácil de resolver indeterminações.

Link: http://pt.wikipedia.org/wiki/Regra_de_l'H%C3%B4pital

Poste o limite aqui, talvez nem seja preciso aplicá-la.
Um abraço!
"Nunca penso no futuro, ele chega rápido demais." Albert Einsten
Avatar do usuário
marciommuniz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Abr 08, 2009 20:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Metalúrgica UFF /Química Lic. UENF
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.