por joaofonseca » Dom Dez 16, 2012 19:37
Estou a estudar espaços vetorias e não estou a conseguir materializar o conceito de base de um espaço vetorial.
Sei que só será possível materializar este conceito em

e em

. O propósito de materializar este conceito é de posteriormente entender os conceitos "mudança de base" e "matriz mudança de base".
Já pesquisei na internet e não encontrei nada. Alguém sabe onde posso encontrar material académico com que possa exclarecer a minha dúvida?
Obrigado
-
joaofonseca
- Colaborador Voluntário

-
- Mensagens: 196
- Registrado em: Sáb Abr 30, 2011 12:25
- Localização: Lisboa
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Jhenrique » Seg Dez 17, 2012 12:37
Gosto de perguntas conceituais como a sua. Mas infelizmente essa eu ñ sei.
O livro "Geometria Analítica - Um Tratamento Vetorial" do Paulo Boulos & Ivan de Camargo tem alguns assuntos sobre mudança de base.
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
por MarceloFantini » Seg Dez 17, 2012 15:23
Em que você está pensando quando diz materializar? O propósito de uma base é simplificar: pelo próprio nome, qualquer outro elemento do espaço vetorial pode ser escrito como combinação linear destes, portanto sabendo os efeitos de uma transformação sobre eles você saberá todos os efeitos sobre o espaço.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por joaofonseca » Seg Dez 17, 2012 20:47
Quando falo em materializar, estou-me a referir a desenhar no plano cartesiano.
Eu sei que uma base é um sistema/conjunto de vectores linearmente independentes que geram um espaço vetorial. Mas como um mesmo espaço vetorial pode ter diferentes bases, como posso diferencia-las no plano, desenhando-as?
-
joaofonseca
- Colaborador Voluntário

-
- Mensagens: 196
- Registrado em: Sáb Abr 30, 2011 12:25
- Localização: Lisboa
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por MarceloFantini » Seg Dez 17, 2012 21:12
O problema de pensar assim é quando encontramos espaços vetoriais não geométricos, como o espaço das matrizes

, o espaço das funções contínuas no intervalo
![[0,1] [0,1]](/latexrender/pictures/ccfcd347d0bf65dc77afe01a3306a96b.png)
, etc. Prender-se a este tipo de visualização geométrica apenas servirá para prejudicar.
No caso particular de

, tome por exemplo a base

. Então os eixos coordenados são dois eixos fazendo 45° entre si.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por joaofonseca » Ter Dez 18, 2012 07:07
MarceloFantini,
Significa que nesse exemplo, em vez de termos um referencial ortognal tal como o conhecemos, temos um referencial "inclinado"?!?!
Eu sei que a visualização deste conceito só servirá para

ou para

, mas para ententer o conceito mudança de base eu necessito de entender em que se diferenciam bases diferentes do mesmo espaço vetorial. Assim a melhor forma é começar por espaços vetoriais que eu possa visualizar.
Obrigado pela explicação
-
joaofonseca
- Colaborador Voluntário

-
- Mensagens: 196
- Registrado em: Sáb Abr 30, 2011 12:25
- Localização: Lisboa
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por MarceloFantini » Ter Dez 18, 2012 07:55
Sim, teremos um referencial inclinado. É um referencial como outro qualquer. A questão é que estamos acostumados a trabalhar com bases ortonormais, isto é, cujos elementos dois a dois são ortogonais e com normas unitárias. Um pouco adiante você verá que é sempre possível ortogonalizar uma dada base pelo processo de ortogonalização de Gram-Schmidt, uma vez que unitarizar os vetores é fácil.
O conceito de mudança de base é muito importante. Por que? Ora, não é apenas para simplificar contas (ou dificultá-las, nos exercícios de álgebra linear). Sabendo que podemos mudar de base, isto significa que as propriedades do espaço vetorial permanecem invariante sob base. Em outras palavras, as características interessantes de um espaço vetorial são intrínsecas, e isto abre novos caminhos. Transformações lineares entre espaços vetoriais também gozam desta propriedade, o que significa que propriedades dessas transformações podem ser estudados sem referência a uma base particular, o que não necessariamente acontece em outros contextos da matemática.
É por isso que em diversos livros de álgebra linear encontram-se demonstrações sem 'contas'. Esta é frequentemente a grande vantagem da álgebra linear: obter informações a respeito de estruturas e operadores sem qualquer menção a um ambiente específico, como uma base.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problema (Série Geométrica) - qual a resolução?
por MikeBlogger » Seg Nov 17, 2014 19:46
- 0 Respostas
- 2956 Exibições
- Última mensagem por MikeBlogger

Seg Nov 17, 2014 19:46
Progressões
-
- [Lógica Digital] Sistema Numérico Conversão Base X - Base 10
por Luc4sPaulo » Sex Fev 17, 2017 12:32
- 0 Respostas
- 3934 Exibições
- Última mensagem por Luc4sPaulo

Sex Fev 17, 2017 12:32
Lógica
-
- [Base] Encontrar uma base e a dimensão do subespaço
por anderson_wallace » Sex Jan 10, 2014 00:48
- 3 Respostas
- 13549 Exibições
- Última mensagem por Guilherme Pimentel

Qua Jan 15, 2014 05:23
Álgebra Linear
-
- [Mudança de Base] Matriz de mudança de base ? para ?.
por fabriel » Ter Nov 26, 2013 15:38
- 0 Respostas
- 1974 Exibições
- Última mensagem por fabriel

Ter Nov 26, 2013 15:38
Álgebra Linear
-
- [Progressao] série geometrica X progressao geometrica?
por aajunim » Seg Mar 18, 2013 11:19
- 2 Respostas
- 4001 Exibições
- Última mensagem por aajunim

Ter Mar 19, 2013 11:44
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.