• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integração por substituição] Passo a passo, por favor?

[Integração por substituição] Passo a passo, por favor?

Mensagempor Ronaldobb » Seg Dez 17, 2012 16:24

1. \int_{}^{}\frac{dx}{2+2\sqrt[]{x}}

Minhas contas:

u=\sqrt[]{x}; \frac{du}{dx}=\frac{1}{2\sqrt[]{x}}; du=\frac{1}{2\sqrt[]{x}}dx; 2\sqrt[]{x}du=dx

=\int_{}^{}\frac{2u}{2+2u}du

=2\int_{}^{}\frac{u}{2+2u}du

Cheguei até aí em cima, e não consegui desenvolver mais a conta, pois estão me faltando conhecimentos. Fui no Wolfram e ele me deu o seguinte resultado:

=2\int_{}^{}\left(\frac{1}{2}-\frac{1}{2(u+1)} \right)du

De onde saiu esse sinal de negativo no integrando? e pra onde fou o u que estava no numerador?

=2\int_{}^{}\frac{1}{2}du-\int_{}^{}\frac{1}{u+1}du

E depois parece que o Wolfram fez mais outra substuição:

s=u+1; ds=du

=2\int_{}^{}\frac{1}{2}du-\int_{}^{}\frac{1}{s}ds

Aí fica fácil resolver, usando a tabela...

Poderiam me ajudar a entender essa substituição? Principalmente na parte em que aparece um sinal de negativo no integrando?
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Integração por substituição] Passo a passo, por favor?

Mensagempor young_jedi » Ter Dez 18, 2012 10:33

quando voce tem

\frac{2u}{2+2u}

voce tem que aplicar um conceito chamado frações parciais, se voce ainda não viu é melhor dar uma pesquisada e estudar
mais em todo quase essa expressão pode ser desenvolvida assim

\frac{2u}{2+2u}=\frac{2u+2-2}{2+2u}

somando e subtraindo 2 na expressão eu não altero o seu valor

e ainda pode se separar ela

\frac{2u+2-2}{2+2u}=\frac{2u+2}{2u+2}-\frac{2}{2+2u}


simplificando ainda mais

\frac{2u+2}{2u+2}-\frac{2}{2+2u}=1-\frac{1}{1+u}

substituindo na integral

\int\left(1-\frac{1}{1+u}\right)du

\int du-\int\frac{1}{1+u}du
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integração por substituição] Passo a passo, por favor?

Mensagempor Ronaldobb » Ter Dez 18, 2012 12:14

Faço Administração, e na ementa de Cálculo I pra Administração não tem a matéria de Frações Parciais e a professora falou que nem iria ensinar para nós.

Teria um modo de fazer essa integral sem usar frações parciais?
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Integração por substituição] Passo a passo, por favor?

Mensagempor young_jedi » Ter Dez 18, 2012 13:45

voce pode fazer

u=2+2\sqrt x

du=\frac{2}{2}\frac{1}{\sqrt x}dx

\sqrt{x}du=dx

\frac{2\sqrt x}{2}du=dx

\frac{-2+2+2\sqrt x}{2}du=dx

\frac{u-2}{2}du=dx

substituindo

\int\left( \frac{u-2}{2u}\right)du

\int\left( \frac{-2}{2u}\right)du+\int\left( \frac{u}{2u}\right)du

-\int\frac{1}{u}du+\int \frac{1}{2}du
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integração por substituição] Passo a passo, por favor?

Mensagempor Ronaldobb » Ter Dez 18, 2012 13:50

Obrigado
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.