• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[derivadas ]essa derivada já ta esquentando minha cabeça.

[derivadas ]essa derivada já ta esquentando minha cabeça.

Mensagempor vinicastro » Sáb Dez 15, 2012 22:42

calcule a derivada de ordem 33 da função f(x)=sen(x)+e^x/2.

eu comecei mais fique com duvidas f'=cos(x)+e^x/2*1/2 nem sei se ta certo.
vinicastro
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Dez 15, 2012 22:22
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. civil
Andamento: cursando

Re: [derivadas ]essa derivada já ta esquentando minha cabeça

Mensagempor e8group » Sáb Dez 15, 2012 23:04

Boa noite , qual das três funções a seguir corresponde com a do enunciado .

i)

f(x) = \frac{ sin(x) + e^x}{2}


ii)

f(x) = sin(x) + \frac{e^x}{2}

iii)

f(x) = sin(x) + e^{x/2}

Qual das três ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [derivadas ]essa derivada já ta esquentando minha cabeça

Mensagempor vinicastro » Dom Dez 16, 2012 09:58

é a terceira.
vinicastro
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Dez 15, 2012 22:22
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. civil
Andamento: cursando

Re: [derivadas ]essa derivada já ta esquentando minha cabeça

Mensagempor vinicastro » Dom Dez 16, 2012 10:06

f(x)=sen(x)+ \right){e}^{\frac{x}{2}}
É ESSA AQUI, ESTOU APRENDENDO USAR AS FERRAMENTAS AINDA.
vinicastro
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Dez 15, 2012 22:22
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. civil
Andamento: cursando

Re: [derivadas ]essa derivada já ta esquentando minha cabeça

Mensagempor e8group » Dom Dez 16, 2012 13:57

OK !

Note que ,


D^{33}_x e^{x/2} =   ( e^{x/2})    \underset{\text{33 vezes}}{\underbrace{\cdot \frac{x'}{2} \cdot  \frac{x'}{2}  \cdots  \frac{x'}{2}}} =  \frac{e^{x/2}}{2^{33}}



e


D^{33}_x sin(x) = D^{33 - 1} _x   cos(x) = D_x^{33-2}(-sin(x)) = D^{33-3}_x cos(x) = D_x^{33-4}(-sin(x)) =  (\hdots) \\ 

\implies   D^{33}_x (sin(x)) = cos(x) .

Basta observar o comportamento acima de cada derivação ,assim chega-se na resposta acima , Logo D^{33}_x( e^{x/2} + sin(x) ) =  \frac{ e^{x/2}}{2^{33}}  +   cos(x) .


Qual quer dúvida só comentar .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [derivadas ]essa derivada já ta esquentando minha cabeça

Mensagempor vinicastro » Dom Dez 16, 2012 15:57

poxa muito obrigado.

mas o sinal da explicação ficou trocado
y=sen(x)
y'=cos(x)
y''=-sen(x)
y'''=-cos(x)
y^4=sen(x)
vinicastro
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Dez 15, 2012 22:22
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}