por Fabio Wanderley » Sex Dez 14, 2012 11:14
Bom dia a todos!
Já fiz Cálculo I, mas nunca estudei a integral de uma função em que a variável está dentro de módulo.
No caso, tenho o seguinte exercício:
Determinar o valor de
k que satisfaça:

Alguém pode me ajudar?
Desde já agradeço!
-

Fabio Wanderley
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Sex Mar 23, 2012 12:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatística
- Andamento: cursando
por young_jedi » Sex Dez 14, 2012 11:59
primeiro voce tem que fazer uma analise do modulo
se x>1 então

agora, se x<1 então

então voce separa a integral em duas partes

resolvendo as duas integrais e igualando a 1 voce encontra o valor de k
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Fabio Wanderley » Sex Dez 14, 2012 14:40
Muito obrigado, young_jedi!
Eu postei que nunca havia feito uma integral assim, mas quando vi sua explicação, eu me lembrei de ter feito um exercício envolvendo módulo. A questão é interessante para avaliarmos os intervalos de integração.
Para constar,

.
-

Fabio Wanderley
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Sex Mar 23, 2012 12:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatística
- Andamento: cursando
por young_jedi » Sex Dez 14, 2012 16:04
acho que é isso mesmo k=1/2
nas minhas contas aqui deu este valor tambem
ate mais Fabio Wanderley
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limite (envolvendo Módulo)
por killerkill » Ter Ago 09, 2011 23:12
- 7 Respostas
- 10802 Exibições
- Última mensagem por LuizAquino

Qua Ago 10, 2011 11:47
Cálculo: Limites, Derivadas e Integrais
-
- limite envolvendo modulo
por matmatco » Qui Mar 22, 2012 23:18
- 7 Respostas
- 4329 Exibições
- Última mensagem por LuizAquino

Ter Mar 27, 2012 13:14
Cálculo: Limites, Derivadas e Integrais
-
- Integral do módulo?
por Questioner » Dom Mai 16, 2010 18:15
- 2 Respostas
- 32534 Exibições
- Última mensagem por LuizAquino

Qui Abr 21, 2011 09:38
Cálculo: Limites, Derivadas e Integrais
-
- Integral com módulo.
por adecris » Sex Nov 11, 2011 13:01
- 1 Respostas
- 4322 Exibições
- Última mensagem por LuizAquino

Sex Nov 11, 2011 17:12
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Módulo
por iagoyotsui » Ter Set 24, 2013 19:18
- 1 Respostas
- 2000 Exibições
- Última mensagem por Russman

Ter Set 24, 2013 21:43
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.