por jonaskessinger » Qui Dez 13, 2012 18:16
Boa tarde...
Tenho a duvida da função abaixo, preciso saber como chegar nos pontos criticos (são 4, conforme mostrei abaixo):
Função:
f(x,y) = xy(1-x-y) = xy - x²y-xy²
derivando em x e y:
==> f[x] = y-2xy - y² = y(1-2x-y) = 0
e
==> f[y] = x-2xy - x² = x(1-x-2y) = 0
Resolvendo o sistema acima, temos os pontos criticos:
(i) (0,0)
{ii) (1,0)
(iii) (0,1)
(iv) (1/3, 1/3)
A questão é...como chegar até esses pontos? Obrigado desde já!
-
jonaskessinger
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Dez 13, 2012 18:13
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Russman » Qui Dez 13, 2012 19:35
O que você entende por "Resolvendo o sistema acima" ? Ora, você tem duas equações e duas incógnitas. Basta que você as manipule e isole o devido valor de cada uma!
Sistema:

Claramente

é solução. Agora, tomando

e

não nulos podemos dividir a 1° equação por

e a 2° por

de forma que nos resta um sistema de Primeiro Grau:

Isolando

na 1° equação,

, e aplicando na 2°, temos

.
Com esse valor de

temos para

, então:

.
Assim, o outro ponto solução é

.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Pontos de criticos
por Gustavooguto » Qua Nov 12, 2014 09:25
- 1 Respostas
- 1340 Exibições
- Última mensagem por adauto martins

Qua Nov 12, 2014 11:58
Cálculo: Limites, Derivadas e Integrais
-
- Pontos Críticos - não sei se fiz certo!
por marinalcd » Qui Abr 03, 2014 15:12
- 0 Respostas
- 1362 Exibições
- Última mensagem por marinalcd

Qui Abr 03, 2014 15:12
Cálculo: Limites, Derivadas e Integrais
-
- Determine os pontos críticos
por Amanda j » Sex Out 21, 2016 12:50
- 1 Respostas
- 3822 Exibições
- Última mensagem por Cleyson007

Sex Out 21, 2016 15:40
Cálculo Numérico e Aplicações
-
- decrescimento,crescimento e pontos criticos
por LILI2016 » Ter Abr 19, 2016 09:57
- 0 Respostas
- 1261 Exibições
- Última mensagem por LILI2016

Ter Abr 19, 2016 09:57
Cálculo: Limites, Derivadas e Integrais
-
- [método dos pontos críticos] comportamento de uma função
por Ge_dutra » Qua Abr 03, 2013 20:34
- 4 Respostas
- 2650 Exibições
- Última mensagem por Ge_dutra

Qui Abr 04, 2013 20:09
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.