• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral dupla

integral dupla

Mensagempor ricardosanto » Seg Dez 10, 2012 23:19

calcule a integral \int_{}^{}\int_{}^{} F(x,y)dydx conhecendo a função abaixo e os domínios de variação.
F(x,y)=xy+3y
0\leq x \leq1  
 
x\leq y \leq2x

desejo ver o desenvolvimento dessa integral, pois não estou conseguindo ter um bom entendimento da mesma.
Obrigado
ricardosanto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Seg Abr 16, 2012 12:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia civil
Andamento: cursando

Re: integral dupla

Mensagempor young_jedi » Ter Dez 11, 2012 11:28

substituindo

\int_{0}^{1}\int_{x}^{2x}(xy+3y)dydx

primeiro realizando a integração em y

\int_{0}^{1}\left(x\frac{y^2}{2}+3\frac{y^2}{2}\right)\Big|_{x}^{2x}dx

aplicando os limites de integração

\int_{0}^{1}\left(x\frac{(2x)^2}{2}+3\frac{(2x)^2}{2}\right)-\left(x\frac{x^2}{2}+3\frac{x^2}{2}\right)dx

\int_{0}^{1}\left(\frac{3x^3}{2}+\frac{9x^2}{2}\right)dx

\left(\frac{3x^4}{8}+\frac{3x^3}{2}\right)\Big|^{1}_{0}

aplicando os limites

\frac{3}{8}+\frac{3}{2}\right)=\frac{15}{8}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.