por crsjcarlos » Qui Dez 06, 2012 10:42
Para que valores de x, x

[0 , 2

] verifica-se a desigualdade:

+

> 1
Resposta:

< x <

ou

< x <

-
crsjcarlos
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Dez 05, 2012 17:32
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por e8group » Qui Dez 06, 2012 17:58
Pela condição de existência

.Uma vez que

.Assim obtemos o seguinte intervalo ,

. Desenvolvendo a inequação ,
![log_{cos(x)}(cos(x)+1) + log_{cos(x)}(2 cos(x)+1)> 1 \\ \implies log_{cos(x)}[(cos(x)+1)(2 cos(x)+1)] > 1 = log_{cos(x)}(cos(x)) log_{cos(x)}(cos(x)+1) + log_{cos(x)}(2 cos(x)+1)> 1 \\ \implies log_{cos(x)}[(cos(x)+1)(2 cos(x)+1)] > 1 = log_{cos(x)}(cos(x))](/latexrender/pictures/7c54790752a18582a827a04a389ac69f.png)
.
Assim ,
![(cos(x)+1)(2 cos(x)+1) > cos(x) \implies 2cos^2(x) + 2cos(x) + 1 > 0 \implies 2 cos(x)[cos(x)+1]> -1 (cos(x)+1)(2 cos(x)+1) > cos(x) \implies 2cos^2(x) + 2cos(x) + 1 > 0 \implies 2 cos(x)[cos(x)+1]> -1](/latexrender/pictures/a8863ee6fa5619d8b1d904ad96cd4941.png)
.
Conclusão :
Como ,

vamos ter

.Logo ,
![2 cos(x)[cos(x)+1] > 0 , \forall x \in (0,\pi/2) \cup (3\pi/2,2\pi) 2 cos(x)[cos(x)+1] > 0 , \forall x \in (0,\pi/2) \cup (3\pi/2,2\pi)](/latexrender/pictures/f20cf26f82cb7738d73fcc01bca3b382.png)
e portanto
![2 cos(x)[cos(x)+1] > - 1 2 cos(x)[cos(x)+1] > - 1](/latexrender/pictures/7845dad4060eaed44ede2cd71a21c089.png)
.
Não sei como chegar no gabarito .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- inequação Logarítmica 2°EM
por Beik » Sex Out 22, 2010 13:28
- 3 Respostas
- 2236 Exibições
- Última mensagem por DanielRJ

Sex Out 22, 2010 15:56
Logaritmos
-
- (AFA) inequação logaritmica
por natanskt » Sex Out 29, 2010 10:49
- 2 Respostas
- 3078 Exibições
- Última mensagem por MarceloFantini

Qui Nov 04, 2010 10:33
Logaritmos
-
- (AFA) inequação logaritmica
por natanskt » Sex Out 29, 2010 10:54
- 2 Respostas
- 1916 Exibições
- Última mensagem por Pedro123

Seg Nov 01, 2010 20:59
Logaritmos
-
- Inequação Logarítmica
por Rafael16 » Sex Ago 10, 2012 11:36
- 1 Respostas
- 1483 Exibições
- Última mensagem por e8group

Sex Ago 10, 2012 12:22
Logaritmos
-
- [Inequação Logaritmica]
por Gustavo Gomes » Sex Fev 07, 2014 22:28
- 1 Respostas
- 1460 Exibições
- Última mensagem por e8group

Sáb Fev 08, 2014 09:58
Inequações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.