por Gustavo Gomes » Ter Dez 04, 2012 22:52
Olá, pessoal.
"Um engenheiro fará uma passarela de 10m de comprimento, ligando a porta da casa ao portão da rua. A passarela terá 1m de largura e ele, para revestí-la, dispõe de 10 pedras quadradas de lado 1m e 5 pedras retangulares de 1m x 2m.
Todas as pedras são da mesma cor, as pedras de mesmo tamanho são indistinguíveis uma das outras e o rejunte ficará aparente, embora com espessura desprezível. De quantas maneiras ele pode revestir a passarela?"
A resposta é 89 possibilidades.
De fato, para o revestimento podem ser combinadas pedras (1x1, 1x2), apenas nas seguintes quantidades: (10, 0), (8, 1), (6, 2), (4, 3), (2, 4) e (0, 5).
Para os casos (10, 0) e (0, 5) só existe uma forma de revestir a passarela em cada caso.
Já para os outros, estou com dificuldades em quantifivar as possíveis posições das pedras, sem contá-las exaustivamente.
Para o caso (8, 1), é fácil observar que são 9 possibilidades, alterando-se apenas a única pedra 2x1, mas para os demais.....
É sugerido utilizar combinações, de fato, para o caso (8, 1), 9 = C9,1. Aplicando esse processo nos demais casos, a resposta se verifica, mas não consegui entender o porque de se aplicar Combinação nesse contexto. Ou seja, como, no cenário contextualizado, as combinações das somas das pedras 1x1 e 1x2 utilizadas, tomadas n a n (n = nº de pedras 1x2 utilizadas em cada caso) resolvem o problema...
Aguardo. Grato.
-
Gustavo Gomes
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sex Out 05, 2012 22:05
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matemática-Licenciatura
- Andamento: formado
por young_jedi » Qua Dez 05, 2012 12:28
vamos analisar o terceiro caso (6,2)
temso um total de 8 posições para as pedras pois 2+6=8
então para a primiera posição nos temos 8 possibilidades para a segunda 7 para a terceira 6 e assim sucessivamente ou seja
8!
mais a posição das 6 pedras quadras não importa ou seja para cada uma das combinações eu tenho 6! combinações que signigica a mesma coisa portanto

mais a posição das pedras retangulares tambem não importam ou seja para cada combinação eu tenho 2! combinações que quer dizer a mesma coisa então

então isto vai dar o real valor da quantidade de combinações e isto é a mesma coisa que

-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Análise Combinatória
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- consigo na lógica mas na prática ta dificll
por Negte » Qui Fev 06, 2014 17:50
- 2 Respostas
- 1710 Exibições
- Última mensagem por Negte

Qui Fev 06, 2014 18:30
Álgebra Elementar
-
- [Sistemas Matriciais] Atividade Prática
por 13_two » Dom Mai 11, 2014 16:50
- 0 Respostas
- 1309 Exibições
- Última mensagem por 13_two

Dom Mai 11, 2014 16:50
Álgebra Linear
-
- [Dúvida Prática Equações] por favor alguem me responda logo.
por ArthurMoreira » Ter Fev 12, 2013 15:52
- 3 Respostas
- 1359 Exibições
- Última mensagem por DanielFerreira

Ter Fev 12, 2013 17:28
Equações
-
- Combinações
por Leone de Paula » Seg Mai 21, 2012 17:49
- 1 Respostas
- 2022 Exibições
- Última mensagem por DanielFerreira

Ter Mai 22, 2012 23:42
Estatística
-
- Combinações
por Leone de Paula » Ter Mai 22, 2012 00:03
- 0 Respostas
- 1069 Exibições
- Última mensagem por Leone de Paula

Ter Mai 22, 2012 00:03
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.