• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão de Trigonometria I

Questão de Trigonometria I

Mensagempor Leticiamed » Dom Dez 02, 2012 10:56

Considere as funções f(y) = ?1-y², para y ? R, com -1?y?1 e g(x) = sen(2x), para x ? R. Resolva a equação (fog)(x) = 1/2.

Obs: Eu vi a resolução na minha apostila e me perdi nas passagens, estou completamente confusa.
Leticiamed
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Dez 02, 2012 10:44
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibular
Andamento: formado

Re: Questão de Trigonometria I

Mensagempor e8group » Dom Dez 02, 2012 19:54

Boa tarde .Por favor , sua função é definida por f(y) = \sqrt{1 -y^2} ou por f(y) = \sqrt{1} - y^2  = 1 -y^2 ?

Eu acredito que seja a primeira , sendo assim .Veja que f \circ g (x) =  f(g(x)) . Dada a função g , g(x) = sin(2x) vamos ter (f \circ g )(x) =  f(g(x)) = \sqrt{1 - (g(x))^2} . Lembrando que , g(x) = sin(2x) implica (g(x))^2 =  sin^2(2x) .Daí , (f \circ g )(x) =  f(g(x)) = \sqrt{1 - (g(x))^2} = \sqrt{1 -sin^2(2x)} . Pela identidade trigonométrica fundamental sin^2(\gamma) + cos^2(\gamma) =  1 .Vamos concluir que ,

(f \circ g )(x) =  f(g(x)) = \sqrt{1 - (g(x))^2} = \sqrt{1 -sin^2(2x)} =  \sqrt{cos^2(2x) }  = | cos(2x)| .

Basta achar os respectivos valores para x que |cos(2x)| = 1/2 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Questão de Trigonometria I

Mensagempor Leticiamed » Seg Dez 03, 2012 13:19

Ah, já perguntei para varias pessoas sobre esse exercício e ninguém consegue me explicar, mas obrigada de qualquer maneira
Leticiamed
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Dez 02, 2012 10:44
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibular
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)