• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resolução de sistemas (método de Gauss-Jordan)

Resolução de sistemas (método de Gauss-Jordan)

Mensagempor Danilo » Qua Nov 28, 2012 20:08

Resolver o sistema utilizando o método de Gauss-Jordan

2x1 + 2x2 + 2x3 = 0
-2X1+ 5x2+2x3 = 1
8x1 + x2 + 4x3 = -1

Bom, colocando o sistema na forma matricial, escalonando e colocando na forma reduzida... eu cheguei na seguinte matriz:

\begin{pmatrix}
   1 & 0 & \frac{3}{7} &  \frac{-1}{7}\\ 
   0 & 1 &  \frac{4}{7}& \frac{1}{7}
   

\end{pmatrix}

Bom, na verdade a matriz é 3x3, sendo a última linha sendo composta só por zeros.. mas eu não consegui representar usando o latex.

A resposta, segundo o livro é x1 = -1/7 - 3/7\alpha
x2 = 1/7 - 4/7 \alpha
x3 = \alpha

Eu não entendi a resposta... (ela está na forma matricial, sendo x1, x2, x3 representando uma coluna e cada linha o outro lado da igualdade...)

na última linha fica apenas 0 0 0 0... por que isso vai ser igual a \alpha ?????? Grato desde já!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Resolução de sistemas (método de Gauss-Jordan)

Mensagempor e8group » Qua Nov 28, 2012 20:42

A última linha é composta por zeros certo ? Se isto for verdade, quer dizer que para quaisquer valores que x_3 assumir implicará uma solução verdadeira que satisfaz cada equação ,isto é, para cada valor que \alpha assumir temos uma nova solução ,infintas soluções . Para compreender isto , note que inicialmente temos uma matriz 3\times 3 ( 3 equações e 3 incógnitas ) .Mas, após operações elementares , obtemos 2 equações para 3 incógnitas ,como o número de equações é menor que o de variáveis ,há de esperar que teremos uma incógnita em função da outra .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}