• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral por partes

Integral por partes

Mensagempor menino de ouro » Qua Nov 28, 2012 20:26

aqui , não consigo montar a integral?

\int_{}^{} x(lnx)^2dx=


chamei de u , =(lnx)^2 v = xdx

du=\frac{2ln(x)}{x}dx DV= dx


\int_{}^{}udv=u.v-\int_{}^{}v.du


no meu gabarito a resposta é = \frac{1}{2}.x^2.(lnx)^2 - \frac{1}{2}.x^2.lnx+\frac{x^2}{4}+c

tentei pelo WOLFRAM e deu = \frac{x^2}{4}+\frac{1}{2}.x^2.ln^2x-\frac{1}{2}.x^2.lnx+c
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: Integral por partes

Mensagempor e8group » Qua Nov 28, 2012 21:34

Parece ser interessante você fazer o seguinte método :


\int x(ln(x))^2  dx  = \int x(ln(x))^2 \cdot\frac{x}{x}\ dx = \int \frac{(x\cdot ln(x))^2}{x} dx


Fazendo \lambda = ln(x) \implies  d\lambda =  \frac{dx}{x} .Assim ,


\int \frac{(x\cdot ln(x))^2}{x} dx =  \int (e^{\lambda}\cdot \lambda)^2 d\lambda .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.