• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Máximo e mínimo com duas Variáveis

Máximo e mínimo com duas Variáveis

Mensagempor rhmgh » Sáb Nov 24, 2012 08:19

z=x^4+y^4-2x^2 - 4xy-2y^2

o prof deu esse e alguns outro exercícios para estudar em casa, esse eu estou com dificuldade para fazer porque depois que eu derivo em relação a x e a y faço o sistema e somo as duas equações está dando x = y e ai eu não consigo descobrir a discriminante será que alguém consegue me ajudar?
rhmgh
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Jun 10, 2012 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Máximo e mínimo com duas Variáveis

Mensagempor MarceloFantini » Sáb Nov 24, 2012 15:55

Você poderia mostrar suas contas? Não necessariamente está errado, pela sua descrição parece que faltam algumas contas.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Máximo e mínimo com duas Variáveis

Mensagempor rhmgh » Sáb Nov 24, 2012 23:25

posso sim, vamos lá

dz/dx = 4x^3 - 4x - 4y
dz/dy = 4y^3 - 4x - 4y

somei as 2, deu:

4x^3 - 4y^3 = 0
4x^3 = 4y^3
x^3 = 4y^3/4
x = \sqrt{y^3} (aqui é raiz cubica ta, eu não consegui fazer o simbolo)

e ai vai ficar:

x = y

fazendo as derivadas de segunda ordem:

dz^2/dx^2 = 12x^2 - 4 = A
dz^2/dy^2 = 12y^2 - 4 = C
dz^2/dxdy = -4 =B

Delta = A*C - B^2

(12x^2 -4) * (12y^2 -4) -(-4)^2

eu travei aqui, não sei como continuar
rhmgh
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Jun 10, 2012 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Máximo e mínimo com duas Variáveis

Mensagempor MarceloFantini » Dom Nov 25, 2012 19:30

Vamos lá. Primeiro, vamos corrigir sua notação: a que usou significa derivada total, enquanto a correta para derivadas parciais é \frac{\partial f}{\partial x}. Então

\begin{cases}
\frac{\partial z}{\partial x} = 4x^3 -4x -4y = 0, \\
\frac{\partial z}{\partial y} = 4y^3 -4x -4y =0.
\end{cases}

Subtraindo você encontrou que x=y. Substituindo na primeira equação vem 4x^3 -4x -4x = 4(x^3 -2)=0, logo x = y = \sqrt[3]{2} e o par (\sqrt[3]{2}, \sqrt[3]{2}) talvez seja máximo ou mínimo.

Calculando as derivadas de segunda ordem temos

\begin{cases}
\frac{\partial^2 z}{\partial x^2} = 12x^2 -4, \\
\frac{\partial^2 z}{\partial y^2} = 12y^2 -4, \\
\frac{\partial^2 z}{\partial x \partial y} = -4.
\end{cases}

Logo o Hessiano será H(x,y) = (12x^2 -4) \cdot (12y^2 -4) - (-4)^2. Substituindo o ponto (\sqrt[3]{2}, \sqrt[3]{2}) temos que H(\sqrt[3]{2}, \sqrt[3]{2}) > 0, portanto um ponto de mínimo local.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Máximo e mínimo com duas Variáveis

Mensagempor rhmgh » Ter Nov 27, 2012 08:52

MarceloFantini escreveu: 4x^3 -4x -4x = 4(x^3 -2)=0

não entendi aqui! :S
rhmgh
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Jun 10, 2012 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Máximo e mínimo com duas Variáveis

Mensagempor MarceloFantini » Ter Nov 27, 2012 19:09

Note que 4x^3 -4x -4x = 4x^3 - 8x = 4(x^3 -2) = 0. Eu apenas pulei uma passagem.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Máximo e mínimo com duas Variáveis

Mensagempor rhmgh » Ter Nov 27, 2012 23:00

MarceloFantini escreveu:Note que 4x^3 -4x -4x = 4x^3 - 8x = 4(x^3 -2) = 0. Eu apenas pulei uma passagem.


ahhhhhh tahh, e também agora que eu percebi que como o x = y você subsituiu ali, não tinha pensado assim ... dããã ... kkk

valeu cara, muito obrigado! :D
rhmgh
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Jun 10, 2012 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?