• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Progressão geométrica] e matemática financeira

[Progressão geométrica] e matemática financeira

Mensagempor fernandocez » Sex Nov 23, 2012 16:54

Essa eu também não consegui.

48) O valor de uma série uniforme A, um tempo antes do 1º pagamento, onde se tem n pagamentos iguais a P, e i é a taxa de juros, é obtido pela soma mostrada abaixo:

A=\,\frac{P}{1+i}+\frac{P}{{(1+i)}^{2}}+\frac{P}{{(1+i)}^{3}}+...+\frac{P}{{(1+i)}^{n}}

Uma forma equivalente dessa série é dada por:

a) A=P\frac{1-{(1+i)}^{n}}{i}
b) A=P\frac{1-{(1+i)}^{-n}}{i} (resposta certa)
c) A=P\frac{1+{(1+i)}^{n}}{i}
d) A=P\frac{1+{(1-i)}^{-n}}{i}
e) A=P\frac{1-{(1-i)}^{n}}{i}

Eu tentei fazer tipo racionalizar, multipliquei o numerador e o denominador por {(1-i)}^{n} e não cheguei a nenhum lugar. Aguém tem uma ideia?
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: [Progressão geométrica] e matemática financeira

Mensagempor young_jedi » Sex Nov 23, 2012 18:37

em uma pg do tipo

a+ar+ar^2+ar^3+...+ar^{n}

a soma é dada por

a.\left(\frac{r^{n+1}-1}{r-1}\right)

analisando a pg nos temos que a=P e r=(1+i)^{-1}

portanto

A=P.\left(\frac{(1+i)^{-n-1}-1}{(i+1)^{-1}-1}\right)-P

A=P.\left(\frac{(1+i)^{-n}-(1+i)}{(1-(1+i)}\right)-P

A=P.\left(\frac{(1+i)^{-n}-1-i}{-i}\right)-P

A=P.\left(\frac{(1+i)^{-n}-1-i+i}{-i}\right)

A=P.\left(\frac{(1+i)^{-n}-1}{-i}\right)

A=P.\left(\frac{1-(1+i)^{-n}}{i}\right)
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Progressão geométrica] e matemática financeira

Mensagempor fernandocez » Sex Nov 23, 2012 19:00

Fiquei confuso. Eu acho que tenho que estudar mais. PG básica eu resolvo mas essa... Obrigado.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59