por gtei » Qui Nov 22, 2012 18:46
Oi pessoal, tava tentando resolver essa questão da PUCRS de 2007 e acabei me perdendo. Aí vai (tentativa abaixo):
Um ponto se movimenta sobre um plano onde está situado
um referencial cartesiano. Seu trajeto percorre a
circunferência de equação x² + y² = 1 e seu deslocamento
é feito a partir do ponto ( 1, 0 ) no sentido antihorário
até a primeira interseção dessa circunferência
com a reta y = x. Essa interseção é dada pelo ponto
A) (cos0º, sen0º)
B) (sen30º, cos 30º)
C) (cos 45º, sen 45º)
D) (sen 60º, cos60º)
E) (sen90º, cos90º)
O que eu fiz foi o seguinte: desenhei a o círculo com centro (0,0) e raio 1 e a reta y=x. Marquei o ponto 1,0 e fiz a trajetória, até chegar no ponto de interseção, que para mim ficou no segundo quadrante. Agora não sei o que fazer! Como descubro as coordenadas do ponto?
Obrigado!
-
gtei
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Nov 22, 2012 18:40
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por e8group » Qui Nov 22, 2012 20:00
Para descrever isto , vamos supor que existe um ponto

simultaneamente pertencente a circunferência e a reta , como

estar no segundo quadrante ,

. Assim ,

. Mas ,

daí ,

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por MarceloFantini » Qui Nov 22, 2012 20:05
Existem algumas formas de encontrar a resposta.
Uma delas é perceber que

denota uma reta que faz um ângulo de

com o eixo x, portanto este será o ângulo. Como o raio é um, podemos descrever o ponto como

.
Outra é resolver de maneira puramente analítica: use que

,

e faça

, assim

.
Usando a relação fundamental temos

, logo

.
Elevando a primeira equação ao quadrado e substituindo segue que

,

e

.
Portanto

ou

.
Disso você conclui que

ou

. Como queremos a primeira interseção, a resposta é

.
Não sei como você andou até a interseção, mas é impossível estar no segundo quadrante. A reta

nunca passa pelo segundo nem quarto quadrantes!
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- geometria analítica estudo da reta ponto de interseção
por jeffersonricardo » Dom Ago 22, 2010 08:27
- 0 Respostas
- 1512 Exibições
- Última mensagem por jeffersonricardo

Dom Ago 22, 2010 08:27
Geometria Analítica
-
- geometria analítica estudo da reta ponto de interseção
por jeffersonricardo » Dom Ago 22, 2010 08:27
- 0 Respostas
- 1377 Exibições
- Última mensagem por jeffersonricardo

Dom Ago 22, 2010 08:27
Geometria Analítica
-
- [Geometria Analítica] Posição relativa entre reta e plano
por jennakusterbeck » Qui Set 20, 2012 13:52
- 4 Respostas
- 3566 Exibições
- Última mensagem por jennakusterbeck

Qui Set 20, 2012 17:18
Geometria Analítica
-
- [Interseção entre planos]
por sulafuly » Dom Mar 02, 2014 01:14
- 0 Respostas
- 2012 Exibições
- Última mensagem por sulafuly

Dom Mar 02, 2014 01:14
Geometria Analítica
-
- Interseção entre planos
por marinasaboia » Sex Jan 08, 2016 14:44
- 1 Respostas
- 3227 Exibições
- Última mensagem por RuuKaasu

Sex Jan 15, 2016 21:52
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.