• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Obtenção de séries por meio de manipulações algébricas

Obtenção de séries por meio de manipulações algébricas

Mensagempor Aprendiz2012 » Qui Nov 22, 2012 15:15

5) Considerando \frac{1}{1-x}=1+x+{x}^{2}+...+{x}^{n}+...=\sum_{n=0}^{\infty}{x}^{n} use manipulações algébricas e escreva a série de potências que representa a função \frac{1}{1-x^2}


"manipulações algébricas" seria eu trocar os valores??

resposta:

\frac{1}{1-x^2}=\sum_{n=0}^{\infty}{x}^{2n}
Aprendiz2012
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sáb Ago 11, 2012 18:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em química
Andamento: formado

Re: Obtenção de séries por meio de manipulações algébricas

Mensagempor MarceloFantini » Qui Nov 22, 2012 17:46

Sim, está correto.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Obtenção de séries por meio de manipulações algébricas

Mensagempor e8group » Qui Nov 22, 2012 19:27

Pensei assim,

Se x\in (-1,0)\cup (0,1) é verdade que ,

\sum_{n=0}^\infty x^n  = \frac{1}{1-x} .Tome por exemplo -3 e 2 . Faça o teste .


Já ,


\frac{1}{1-x^2}

caso assumirmos

k =  x^2 , temos que \frac{1}{1-x^2}  =  \frac{1}{1-k} .

Ora , para quaisquer valores que x assumir, x \in  (-1,0)\cup (0,1) vamos ter, k \in (0,1) .

Portanto ,


\frac{1}{1-k} = \sum_{n=0}^\infty k^n  =  \sum_{n=0}^\infty (x^2)^n   =  \sum_{n=0}^\infty x^{2n} .

O que acha ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Obtenção de séries por meio de manipulações algébricas

Mensagempor MarceloFantini » Qui Nov 22, 2012 19:54

A série é convergente para x=0 também. A restrição é apenas que |x|<1, e no caso que |x^2| <1 também.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.