por inkz » Qui Nov 22, 2012 02:49
UM PONTO P DESCREVE UMA CURVA SOBRE O GRÁFICO DA FUNÇÃO f(x,y) = x² + y² DE MODO QUE SUA PROJEÇÃO Q SOBRE O PLANO xy DESCREVE A RETA x + y = 1. DETERMINE O PONTO DA CURVA QUE SE ENCONTRA MAIS PRÓXIMO DO PLANO xy.
Não consegui nem entender o enunciado galera.. alguém pode me dar uma ajuda sobre o que devo fazer?
abraços!!
-
inkz
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Ter Nov 20, 2012 01:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por LuizAquino » Qui Nov 22, 2012 11:12
inkz escreveu:UM PONTO P DESCREVE UMA CURVA SOBRE O GRÁFICO DA FUNÇÃO f(x,y) = x² + y² DE MODO QUE SUA PROJEÇÃO Q SOBRE O PLANO xy DESCREVE A RETA x + y = 1. DETERMINE O PONTO DA CURVA QUE SE ENCONTRA MAIS PRÓXIMO DO PLANO xy.
Não consegui nem entender o enunciado galera.. alguém pode me dar uma ajuda sobre o que devo fazer?
abraços!!
A figura abaixo ilustra o exercício.

- figura.png (13.61 KiB) Exibido 4476 vezes
Note que o gráfico da função f é um paraboloide. Além disso, note que a curva descrita pela trajetória do ponto P (linha pontilhada em vermelho) sobre o gráfico de f forma uma parábola. O objetivo do exercício é determinar o ponto A, que representa o ponto dessa curva que está mais próximo do plano xy.
Para determinar o ponto A, comece observando que como ele está sobre o gráfico de f ele tem coordenadas (x, y, x² + y²), para algum par de números x e y.
Por outro lado, como a projeção de A está sobre a reta x + y = 1 (ou seja, y = 1 - x), podemos reescrever suas coordenadas como (x, 1 - x, x² + (1 - x)²).
Tudo que você precisa fazer agora é determinar qual é o valor de x que faz o ponto A ficar mais próximo do plano xy. Em outras palavras, você precisa determinar qual é o valor de x para o qual a distância do ponto A até o plano xy é a menor possível.
Agora tente concluir o exercício a partir daí.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por inkz » Qui Nov 22, 2012 21:01
devo calcular a distância entre a reta e o ponto, não? porque essa já é a menor distância entre eles. ou não?
obrigado pela ajuda!!
-
inkz
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Ter Nov 20, 2012 01:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por LuizAquino » Sex Nov 23, 2012 11:07
inkz escreveu:devo calcular a distância entre a reta e o ponto, não? porque essa já é a menor distância entre eles. ou não?
Note que a menor distância entre o ponto A e o plano xy irá coincidir com a menor distância entre o ponto A e a reta x + y = 1.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por inkz » Sáb Nov 24, 2012 08:51
de fato
muito obrigado pela ajuda (:
-
inkz
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Ter Nov 20, 2012 01:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Vetores] Ponto de reta próximo a outros pares de ponto
por cmcrz97 » Ter Jun 19, 2018 20:29
- 0 Respostas
- 2806 Exibições
- Última mensagem por cmcrz97

Ter Jun 19, 2018 20:29
Álgebra Linear
-
- Valor mais próximo
por Balanar » Dom Ago 08, 2010 16:53
- 1 Respostas
- 5595 Exibições
- Última mensagem por Pedro123

Dom Ago 08, 2010 18:28
Desafios Difíceis
-
- Funções com mais de uma variável - curvas de nível
por Victor Mello » Sex Fev 21, 2014 14:23
- 2 Respostas
- 1607 Exibições
- Última mensagem por Victor Mello

Sex Fev 21, 2014 20:53
Funções
-
- [´PLANO] Ponto de intersecção de reta com plano
por manuel_pato1 » Ter Set 25, 2012 09:48
- 1 Respostas
- 14847 Exibições
- Última mensagem por LuizAquino

Ter Set 25, 2012 12:11
Geometria Analítica
-
- Localizar ponto no plano R³
por samra » Qui Set 20, 2012 13:33
- 4 Respostas
- 3077 Exibições
- Última mensagem por samra

Sáb Out 06, 2012 15:43
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.