• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Formula Somatorio de cada Termo

Formula Somatorio de cada Termo

Mensagempor carlosecc » Seg Nov 19, 2012 21:55

Prezados queria umas dicas para achar a formula do somatorio de cada termo, a formula recursiva entendi tranquilo, mas quando a formula do somatorio eu fico remando sem sair do lugar uma sequencia que fiquei tentado achar é <2, 7, 12, 17, 22, ...>. Desde ja agradeço a quem responder.
carlosecc
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Nov 19, 2012 21:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Informatica
Andamento: cursando

Re: Formula Somatorio de cada Termo

Mensagempor MarceloFantini » Seg Nov 19, 2012 23:00

Isto é uma progressão aritmética, que por definição é uma sequência cuja diferença entre os termos é constante.

Para ver isto, note que 7 -2 = 12 - 7 = 17 - 12 = 22 - 17 e assim em diante.

Não tenho tempo de fazer a dedução, mas o cálculo da soma é

S_n = \frac{n(a_1 + a_n)}{2}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Formula Somatorio de cada Termo

Mensagempor carlosecc » Ter Nov 20, 2012 20:41

Obrigado Marcelo irei tentar aplicar no exercicio, mas ta dificil aplicar somatorio sobre recursividade.
carlosecc
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Nov 19, 2012 21:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Informatica
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.