• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Formula Somatorio de cada Termo

Formula Somatorio de cada Termo

Mensagempor carlosecc » Seg Nov 19, 2012 21:55

Prezados queria umas dicas para achar a formula do somatorio de cada termo, a formula recursiva entendi tranquilo, mas quando a formula do somatorio eu fico remando sem sair do lugar uma sequencia que fiquei tentado achar é <2, 7, 12, 17, 22, ...>. Desde ja agradeço a quem responder.
carlosecc
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Nov 19, 2012 21:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Informatica
Andamento: cursando

Re: Formula Somatorio de cada Termo

Mensagempor MarceloFantini » Seg Nov 19, 2012 23:00

Isto é uma progressão aritmética, que por definição é uma sequência cuja diferença entre os termos é constante.

Para ver isto, note que 7 -2 = 12 - 7 = 17 - 12 = 22 - 17 e assim em diante.

Não tenho tempo de fazer a dedução, mas o cálculo da soma é

S_n = \frac{n(a_1 + a_n)}{2}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Formula Somatorio de cada Termo

Mensagempor carlosecc » Ter Nov 20, 2012 20:41

Obrigado Marcelo irei tentar aplicar no exercicio, mas ta dificil aplicar somatorio sobre recursividade.
carlosecc
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Nov 19, 2012 21:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Informatica
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.