• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Números_Dúvida_na _Resolução

Números_Dúvida_na _Resolução

Mensagempor Valmel » Ter Nov 20, 2012 10:54


Estou com dúvida em parte da resolução que vou colocar de vermelho,o que quero entender é porque na parte 3 ele foi de 100 a 468,o por quê o "468",se são números de 3 algarismos,por quê ele não foi até o "999",que finaliza os números de 3 algarismos?


31)Para enumerar as páginas de um livro foram necessários 1296 algarismos.Calcule quantas páginas tem esse livro?

1) Das pág. 1 a 9,serão 9 páginas e um total de 9 algarismos.
2)Das pág. 10 a 99,serão 90 páginas de 2 algarismos cada,total 180 algarismos
3) Das páginas 100 a 468,serão 369 pág. de 3 algarismos (369 x 3+1107 algarismos).

Somando então o número de páginas ,9 +90+369=468 pág.
Valmel
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qui Set 27, 2012 17:59
Localização: Ceará
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Números_Dúvida_na _Resolução

Mensagempor MarceloFantini » Ter Nov 20, 2012 11:05

Porque a soma total é de 1296 algarismos. Com os números de um e dois dígitos você acumula um total de 189 algarismos, logo sobram 1107 algarismos para as páginas com três dígitos. O número de algarismos da página 999 até 100 é 2700, o que claramente supera demais o que temos.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Aritmética

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}