• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Progressão Geométrica e Logaritmo]

[Progressão Geométrica e Logaritmo]

Mensagempor JU201015 » Seg Nov 19, 2012 00:36

(UFRGS) Considere esta progressão geométrica:
3 ; 0,3 ; 0,03 ; 0,003 ; ...
Os logaritmos decimais de cada um destes números, na ordem em que estão dispostos, formam uma:
a) progressão geométrica de razão 0,01.
b) progressão geométrica de razão 0,1;
c) progressão aritmética de razão 0,1.
d) progressão aritmética de razão -1.
e) progressão geométrica de razão -1.
Não sei como analisar a diferença entre os logaritmos. Me ajudem?
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Progressão Geométrica e Logaritmo]

Mensagempor e8group » Seg Nov 19, 2012 09:22

Bom dia , basta notar que em uma P.G temos ,

a_1  =  k
a_2 =   a_1 \cdot  q
a_3 =    a_2 \cdot  q  =   a_1 \cdot q^2
\vdots

a_n  =     a_1 \cdot q^{n-1}

Com isso nos temos que ,

3\cdot q   =  0,3     ;       0,3 \cdot q =    0,03 \  (...)

É fácil ver que , q = 0,1
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Progressão Geométrica e Logaritmo]

Mensagempor replay » Seg Nov 19, 2012 11:41

Desculpe interferir no tópico que nem é meu.
Mas eu acho que nem precisaria de calculo, é que parece que fica meio óbvio que é 0,1.
Mas a duvida é: O exercicio espera que o aluno saiba reconhecer uma PA ou PG ? Seria isso ?
replay
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Dom Fev 19, 2012 23:43
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Progressão Geométrica e Logaritmo]

Mensagempor MarceloFantini » Seg Nov 19, 2012 12:45

Ju escreveu:(UFRGS) Considere esta progressão geométrica:
3 ; 0,3 ; 0,03 ; 0,003 ; ...
Os logaritmos decimais de cada um destes números, na ordem em que estão dispostos

Nós já temos uma progressão geométrica dada por 3 \cdot 10^{-n}. Ele quer que consideremos os logaritmos decimais, logo devemos tomar

b_n = \log_{10} a_n = \log_{10} 3 \cdot 10^{-n} = \log_{10} 3 -n \log_{10} 10 = \log_{10} 3 - n.

Façamos a diferença entre dois termos consecutivos:

b_{n+1} - b_n = (\log_{10} 3 - (n+1)) - (\log_{10} 3 - n) = -n -1 + n = -1,

portanto é uma progressão aritmética de razão -1[/tex].

Note que é fácil errar estando desatento, pois ele dá uma sequência e depois diz "[...] números, na ordem em que estão dispostos, formam uma" e nisso marcam progressão geométrica de razão 0,1.

Replay, fique a vontade. Todos estão encorajados a contribuir positivamente nas discussões. :y:
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Progressão Geométrica e Logaritmo]

Mensagempor JU201015 » Seg Nov 19, 2012 13:11

MarceloFantini escreveu:
Ju escreveu:(UFRGS) Considere esta progressão geométrica:
3 ; 0,3 ; 0,03 ; 0,003 ; ...
Os logaritmos decimais de cada um destes números, na ordem em que estão dispostos

Nós já temos uma progressão geométrica dada por 3 \cdot 10^{-n}. Ele quer que consideremos os logaritmos decimais, logo devemos tomar

b_n = \log_{10} a_n = \log_{10} 3 \cdot 10^{-n} = \log_{10} 3 -n \log_{10} 10 = \log_{10} 3 - n.

Façamos a diferença entre dois termos consecutivos:

b_{n+1} - b_n = (\log_{10} 3 - (n+1)) - (\log_{10} 3 - n) = -n -1 + n = -1,

portanto é uma progressão aritmética de razão -1[/tex].

Note que é fácil errar estando desatento, pois ele dá uma sequência e depois diz "[...] números, na ordem em que estão dispostos, formam uma" e nisso marcam progressão geométrica de razão 0,1.

Replay, fique a vontade. Todos estão encorajados a contribuir positivamente nas discussões. :y:


Muito obrigada MarceloFantini!! Até que enfim alguém respondeu de acordo com o gabarito kkk Mas ainda tenho uma duvidazinha rsrs Bom, quando chega em "-n -1 +n= -1", como vc chega a conclusão de que é uma PA de razão -1? Eu não consegui enxergar isso.
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Progressão Geométrica e Logaritmo]

Mensagempor MarceloFantini » Seg Nov 19, 2012 13:29

A definição de progressão aritmética é que a diferença entre dois termos consecutivos é constante. Seguindo isso, tomei dois termos consecutivos e calculei sua diferença, que se mostrou constante. Portanto é uma progressão aritmética.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Progressão Geométrica e Logaritmo]

Mensagempor JU201015 » Seg Nov 19, 2012 14:03

MarceloFantini escreveu:A definição de progressão aritmética é que a diferença entre dois termos consecutivos é constante. Seguindo isso, tomei dois termos consecutivos e calculei sua diferença, que se mostrou constante. Portanto é uma progressão aritmética.


Muitíssimo obrigada^^
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Progressão Geométrica e Logaritmo]

Mensagempor Cleyson007 » Seg Nov 19, 2012 14:09

P.A. --> {x1, x2, x3} --> Razão: x2 - x1 = x3 - x2

P.G --> {x1, x2, x3} --> Razão: x3/x2 = x2/x1

Att,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: [Progressão Geométrica e Logaritmo]

Mensagempor e8group » Seg Nov 19, 2012 19:53

obrigado por responder . Não observei que tinha P.A de razão - 1 , nas alternativas , pensei q fosse P.G razão - 1 que estaria erado .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59