por JU201015 » Seg Nov 19, 2012 00:36
(UFRGS) Considere esta progressão geométrica:
3 ; 0,3 ; 0,03 ; 0,003 ; ...
Os logaritmos decimais de cada um destes números, na ordem em que estão dispostos, formam uma:
a) progressão geométrica de razão 0,01.
b) progressão geométrica de razão 0,1;
c) progressão aritmética de razão 0,1.
d) progressão aritmética de razão -1.
e) progressão geométrica de razão -1.
Não sei como analisar a diferença entre os logaritmos. Me ajudem?
-
JU201015
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Nov 10, 2012 00:01
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Seg Nov 19, 2012 09:22
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por replay » Seg Nov 19, 2012 11:41
Desculpe interferir no tópico que nem é meu.
Mas eu acho que nem precisaria de calculo, é que parece que fica meio óbvio que é 0,1.
Mas a duvida é: O exercicio espera que o aluno saiba reconhecer uma PA ou PG ? Seria isso ?
-
replay
- Usuário Parceiro

-
- Mensagens: 57
- Registrado em: Dom Fev 19, 2012 23:43
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MarceloFantini » Seg Nov 19, 2012 12:45
Ju escreveu:(UFRGS) Considere esta progressão geométrica:
3 ; 0,3 ; 0,03 ; 0,003 ; ...
Os logaritmos decimais de cada um destes números, na ordem em que estão dispostos
Nós já temos uma progressão geométrica dada por

. Ele quer que consideremos os
logaritmos decimais, logo devemos tomar

.
Façamos a diferença entre dois termos consecutivos:

,
portanto é uma progressão aritmética de razão -1[/tex].
Note que é fácil errar estando desatento, pois ele dá uma sequência e depois diz "[...] números, na ordem em que estão dispostos, formam uma" e nisso marcam progressão geométrica de razão 0,1.
Replay, fique a vontade. Todos estão encorajados a contribuir positivamente nas discussões.

Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por JU201015 » Seg Nov 19, 2012 13:11
MarceloFantini escreveu:Ju escreveu:(UFRGS) Considere esta progressão geométrica:
3 ; 0,3 ; 0,03 ; 0,003 ; ...
Os logaritmos decimais de cada um destes números, na ordem em que estão dispostos
Nós já temos uma progressão geométrica dada por

. Ele quer que consideremos os
logaritmos decimais, logo devemos tomar

.
Façamos a diferença entre dois termos consecutivos:

,
portanto é uma progressão aritmética de razão -1[/tex].
Note que é fácil errar estando desatento, pois ele dá uma sequência e depois diz "[...] números, na ordem em que estão dispostos, formam uma" e nisso marcam progressão geométrica de razão 0,1.
Replay, fique a vontade. Todos estão encorajados a contribuir positivamente nas discussões.

Muito obrigada MarceloFantini!! Até que enfim alguém respondeu de acordo com o gabarito kkk Mas ainda tenho uma duvidazinha rsrs Bom, quando chega em "-n -1 +n= -1", como vc chega a conclusão de que é uma PA de razão -1? Eu não consegui enxergar isso.
-
JU201015
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Nov 10, 2012 00:01
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MarceloFantini » Seg Nov 19, 2012 13:29
A definição de progressão aritmética é que a diferença entre dois termos consecutivos é constante. Seguindo isso, tomei dois termos consecutivos e calculei sua diferença, que se mostrou constante. Portanto é uma progressão aritmética.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por JU201015 » Seg Nov 19, 2012 14:03
MarceloFantini escreveu:A definição de progressão aritmética é que a diferença entre dois termos consecutivos é constante. Seguindo isso, tomei dois termos consecutivos e calculei sua diferença, que se mostrou constante. Portanto é uma progressão aritmética.
Muitíssimo obrigada^^
-
JU201015
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Nov 10, 2012 00:01
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Cleyson007 » Seg Nov 19, 2012 14:09
P.A. --> {x1, x2, x3} --> Razão: x2 - x1 = x3 - x2
P.G --> {x1, x2, x3} --> Razão: x3/x2 = x2/x1
Att,
Cleyson007
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por e8group » Seg Nov 19, 2012 19:53
obrigado por responder . Não observei que tinha P.A de razão - 1 , nas alternativas , pensei q fosse P.G razão - 1 que estaria erado .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Progressao] série geometrica X progressao geometrica?
por aajunim » Seg Mar 18, 2013 11:19
- 2 Respostas
- 4095 Exibições
- Última mensagem por aajunim

Ter Mar 19, 2013 11:44
Progressões
-
- Progressão aritmética e progressão geométrica
por Danilo Dias Vilela » Sex Mar 12, 2010 13:41
- 1 Respostas
- 4598 Exibições
- Última mensagem por thadeu

Sex Mar 12, 2010 17:36
Progressões
-
- Progressão geométrica (ITA)
por Ananda » Sex Mar 07, 2008 13:27
- 17 Respostas
- 25033 Exibições
- Última mensagem por Ananda

Qui Mar 13, 2008 11:10
Progressões
-
- Progressão Geométrica
por nicecaps » Seg Mar 22, 2010 11:37
- 2 Respostas
- 4112 Exibições
- Última mensagem por nicecaps

Ter Mar 23, 2010 09:45
Progressões
-
- Progressão Geométrica
por Jessie » Qui Abr 29, 2010 17:49
- 1 Respostas
- 2794 Exibições
- Última mensagem por Elcioschin

Qui Abr 29, 2010 20:12
Pedidos
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.