• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Relação entre Grandezas

Relação entre Grandezas

Mensagempor Jhenrique » Sex Nov 16, 2012 02:49

A interpretação para a razão entre duas grandezas é a de "taxa de variação", que, para mim, é uma interpretação muito abrangente e excelente! Mas o que eu não entendo é o produto entre duas grandezas que geralmente é explicado como a área da \int_{x_0}^{x_1}f(x)dx, tal explicação faz sentido para mim quando as grandezas x e y são comprimentos, mas nem sempre são comprimentos, podem ser qualquer outra grandeza, daí a interpretação da área, para mim, não é mais intuitiva. Portanto, como eu poderia interpretar conceitualmente o produto entre duas grandezas? Qualquer dica tá valendo!

Obg!
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Relação entre Grandezas

Mensagempor LuizAquino » Sáb Nov 17, 2012 10:12

Jhenrique escreveu:A interpretação para a razão entre duas grandezas é a de "taxa de variação", que, para mim, é uma interpretação muito abrangente e excelente! Mas o que eu não entendo é o produto entre duas grandezas que geralmente é explicado como a área da \int_{x_0}^{x_1}f(x)dx, tal explicação faz sentido para mim quando as grandezas x e y são comprimentos, mas nem sempre são comprimentos, podem ser qualquer outra grandeza, daí a interpretação da área, para mim, não é mais intuitiva. Portanto, como eu poderia interpretar conceitualmente o produto entre duas grandezas? Qualquer dica tá valendo!


Considere os dois problemas abaixo.

Problema 1) Duas pessoas possuem cada uma 5 balas. Quantas balas elas possuem juntas?

Problema 2) Um retângulo possui lados medindo 2 cm e 5 cm. Qual é a área desse retângulo?

É fácil obter que a reposta desses problemas são, respectivamente, 10 balas e 10 cm².

Obviamente a grandeza "bala" é diferente da grandeza "cm²". Entretanto, em ambos os problemas a reposta é algo como: 10 unidades de "grandeza", onde a palavra "grandeza" pode ser substituída por "bala" ou por "cm²" conforme o caso. Nesse sentido, podemos afirmar que: encontrar a quantidade da grandeza no problema 1 é equivalente a encontrar a quantidade da grandeza no problema 2.

Podemos transpor essa ideia para o caso da integral que você citou. Suponha que a grandeza A é definida como o produto entre as grandezas B e C, isto é, por definição temos A = BC. Suponha ainda que certa função f contínua (e positiva) associa a grandeza B com a grandeza C. Desse modo, achar a quantidade da grandeza A quando a grandeza B varia no intervalo [b_0,\, b_1] e a grandeza C varia conforme f no intervalo [f(b_0),\,f(b_1)] (ou [f(b_1),\,f(b_0)], caso f(b_1)<f(b_0)), é equivalente a achar a quantidade da grandeza área que está abaixo do gráfico de f e acima do eixo x no intervalo dado para B. Essa quantidade de área é representada pela integral \int_{b_0}^{b_1} f(x)\,dx .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Relação entre Grandezas

Mensagempor Jhenrique » Seg Nov 19, 2012 03:33

O que mais me dá um nó na cabeça é que as vezes, no meu curso de técnico em mecânica, preciso calcular o momento estático e o momento de inércia de uma secção e estas grandezas são dimensionadas como L^3 e L^4, respectivamente. E isso não faz sentido para mim, como pode uma grandeza do tipo comprimento ser quadridimensional? Ou outra que não tem nada a ver com volume ser tridimensional? Outra vezes preciso extrair a raiz sexta para determinar o diâmetro de um eixo...

Penso que deveria existir alguma teoria conceitual para explicar isso, algo como distinguir o coeficiente, junto com o seu próprio expoente, da parte literal, assim, a parte adjetiva não se misturaria com a parte substantiva. Sei lá... enfim... é devido a essa confusão que vim a procura de alguma luz.
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Relação entre Grandezas

Mensagempor LuizAquino » Seg Nov 19, 2012 10:27

Jhenrique escreveu:O que mais me dá um nó na cabeça é que as vezes, no meu curso de técnico em mecânica, preciso calcular o momento estático e o momento de inércia de uma secção e estas grandezas são dimensionadas como L^3 e L^4, respectivamente. E isso não faz sentido para mim, como pode uma grandeza do tipo comprimento ser quadridimensional? Ou outra que não tem nada a ver com volume ser tridimensional? Outra vezes preciso extrair a raiz sexta para determinar o diâmetro de um eixo...

Penso que deveria existir alguma teoria conceitual para explicar isso, algo como distinguir o coeficiente, junto com o seu próprio expoente, da parte literal, assim, a parte adjetiva não se misturaria com a parte substantiva. Sei lá... enfim... é devido a essa confusão que vim a procura de alguma luz.


O seu problema é comum para todos os seres humanos: não somos capazes de enxergar quatro dimensões. O nosso sistema ocular apenas consegue enxergar 3 dimensões. É devido a essa limitação biológica que isso lhe "dá um nó na cabeça". Entretanto, apesar dessa limitação visual, não há problema teórico algum em trabalhar com 4 (ou até n) dimensões.

Além disso, geralmente nos cursos técnicos apenas são fornecidas fórmulas prontas (ou tabelas). Mas essas fórmulas (ou tabelas) prontas não "caíram do céu". Tipicamente a obtenção delas é estudada nos cursos de Engenharia, nas disciplinas de Física ou de Cálculo. Procure por esses conteúdos nessas disciplinas. Ao estudar a maneira como os cálculos são obtidos você entenderá melhor a dimensão dessas grandezas.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: