• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Progressão Aritmética]

[Progressão Aritmética]

Mensagempor JU201015 » Sáb Nov 17, 2012 10:21

As medidas dos lados de um retângulo e sua diagonal formam, nessa ordem, uma PA. Sabendo=se que o perímetro desse retângulo é igual a 14, determine a área desse retângulo.
Questão muito simples mas não sei fazer uma conta com os lados e diagonais formando uma PA. Me ajudem?
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Progressão Aritmética]

Mensagempor Cleyson007 » Sáb Nov 17, 2012 11:21

JU201015, vou te dar as dicas. Ok?

As medidas dos lados do retângulo, são: x e y

2x + 2y = 14 (I)

Diagonal --> d² = x² + y²

P.A. = (x, y, Vx²+y²)

y - x = Vx²+y² - y (II) (Obs.: O V é raiz quadrada)

Basta resolver o sistema de equações, e encontrar os valores de x e y.

A área procurada é dada por Ar = x.y

Comente qualquer dúvida :y:
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: [Progressão Aritmética]

Mensagempor MarceloFantini » Sáb Nov 17, 2012 11:29

Sejam a e b os lados do retângulo e d sua diagonal. Como é um retângulo, podemos aplicar o teorema de pitágoras para encontrar que d = \sqrt{a^2 +b^2}.

Pela definição de perímetro temos que 2a + 2b = 14 ou a+b=7.

Pela definição de progressão aritmética sabemos que a razão entre dois termos consecutivos é constante, logo b-a = d-b.

Substituindo d = \sqrt{a^2 + b^2} e b = 7-a segue que

(7-a) -a = (\sqrt{a^2 + (7-a)^2}) - (7-a).

Simplificando,

14-a = \sqrt{a^2 + (7-a)^2}.

Tente terminar. :y:
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Progressão Aritmética]

Mensagempor JU201015 » Dom Nov 18, 2012 10:52

MarceloFantini escreveu:Sejam a e b os lados do retângulo e d sua diagonal. Como é um retângulo, podemos aplicar o teorema de pitágoras para encontrar que d = \sqrt{a^2 +b^2}.

Pela definição de perímetro temos que 2a + 2b = 14 ou a+b=7.

Pela definição de progressão aritmética sabemos que a razão entre dois termos consecutivos é constante, logo b-a = d-b.

Substituindo d = \sqrt{a^2 + b^2} e b = 7-a segue que

(7-a) -a = (\sqrt{a^2 + (7-a)^2}) - (7-a).

Simplificando,

14-a = \sqrt{a^2 + (7-a)^2}.

Tente terminar. :y:


-7{x}^{2}+70x-147=0
Encontro as raízes 7 e 3. Mas se x for 7, y será 0, então x é 3. Sendo x igual a 3, a PA fica:
PA=(X,Y,VX²+Y²)
PA=(3,4,5).
Logo, a área do retângulo é x.y=3.4=12.
Está correto?
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Progressão Aritmética]

Mensagempor MarceloFantini » Dom Nov 18, 2012 23:41

Existe um erro na minha resolução, simplifiquei errado. A conta correta é

2(7-a)-a = 14 -3a = \sqrt{a^2 + (7-a)^2}.

Resolvendo isto você encontrará a=3, daí b=4 e a \cdot b = 12.

Como você encontrou a equação 7x^2 -70x +147=0?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Progressão Aritmética]

Mensagempor JU201015 » Seg Nov 19, 2012 12:30

MarceloFantini escreveu:Existe um erro na minha resolução, simplifiquei errado. A conta correta é

2(7-a)-a = 14 -3a = \sqrt{a^2 + (7-a)^2}.

Resolvendo isto você encontrará a=3, daí b=4 e a \cdot b = 12.

Como você encontrou a equação 7x^2 -70x +147=0?


Eu simplifiquei diferente:
\sqrt[]{{x}^{2}+{(7-x)}^{2}}=14-3x
Mas eu acertei do mesmo jeito =D
Obrigada^^
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D